## Series Solutions of Linear Systems

## Series Solutions of Linear Systems

## Power Series

To best fit a function, we can take higher degree polynomials called Taylor Polynomials. Polynomials of infinite degree are called Power Series. The Taylor Series of $y(x)$ centered at $x=a$ is given by:
$T(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}(a)}{n!}(x-a)^{n}$.
Note: Maclaurin series is Taylor Series where $x=0$.
So $y(x)=T(x)$ in the interval of convergence.

## Part of a power series calculation:

Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a series representation of the function $y=y(x)$ on an interval $I$ containing 0
(a) Express $(\star)(2-x) y^{\prime \prime}+2 y$ as a power series on the interval I.

Algorithm:

1. Take the derivatives of $y$ and plug them into $(\star)$.
2. Then take each sigma and perform a shift to a common term (ex: $n=0$ ).
3. Write as a single summation:

$$
\sum_{n=0}^{\infty}\left[2(n+2)(n+2) a_{n+2}-(n+1)(n) a_{n+1}+2 a_{n}\right] x^{n}
$$

(b) Find the coefficients for $(\star)$ when $y=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Algorithm:

1. Set inside of the single summation from (a) and set to $0: 2(n+2)(n+2) a_{n+2}-(n+$ 1) $(n) a_{n+1}+2 a_{n}=0$.
2. Solve for $a_{n+2}$. This is our recurrence relation.
3. Now you can calculate $n=0, n=1$, etc to get the coefficients in terms of $c_{0}, c_{1}$.
4. Write it out: The series rep. of the solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ is:
$=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$
$=a_{0}+a_{1} x+\left(-\frac{1}{2} a_{0}\right) x^{2}+\left(-\frac{1}{12} a_{0}-\frac{1}{6} a_{1}\right) x^{3} \ldots$
$=a_{0}\left(1-\frac{1}{2} x^{2}-\frac{1}{12} x^{3}+\ldots\right)+a_{1}\left(x-\frac{1}{6} x^{3}\right)$
This is the series representation of $(\star)\left(a_{0}, a_{1}\right.$ are free parameters.)
(c) Find the series representation of the $\operatorname{IVP}(\star)$ with $y(0)=1, y^{\prime}(0)=-1$.

Algorithm:

1. Plug IVP into $y, y^{\prime}, y^{\prime \prime}$ to get your $a_{0}, a_{1}$.
2. Plug these into your equations from above.

## Ordinary Point

$P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0$.
Def: $x_{0}$ is an ordinary point is $P_{0}\left(x_{0}\right) \neq 0$. Otherwise, singular point.
Example: $\left(x^{2}+1\right) y^{\prime \prime}-(7-x) y^{\prime}+y=0$. Find interval for series soln.
$P_{0}(x)=x^{2}+1=0$
$x^{2}=-1$
$x= \pm i$
$\rho=|0-i|=1<$ - note, magnitude, not absolute value
$\rho=|0-(-i)|=1$
Interval: $(0-1,0+1)=(-1,1)$
Magnitude of complex number $a+b i: \sqrt{a^{2}+b^{2}}$.

