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Series Solutions of Linear Systems

Power Series
To best fit a function, we can take higher degree polynomials called Taylor Polynomials. Polynomials of

infinite degree are called Power Series. The Taylor Series of y(x) centered at x=a is given by:

.

Note: Maclaurin series is Taylor Series where x = 0.

So  in the interval of convergence.

Part of a power series calculation:

Let  be a series representation of the function  on an interval  containing 

.

(a) Express  as a power series on the interval I.

Algorithm:

1. Take the derivatives of  and plug them into .

2. Then take each sigma and perform a shift to a common term (ex: ).

3. Write as a single summation:

(b) Find the coefficients for  when .

Algorithm:

1. Set inside of the single summation from (a) and set to 0: 

.

2. Solve for . This is our recurrence relation.

3. Now you can calculate n=0, n=1, etc to get the coefficients in terms of .

4. Write it out: The series rep. of the solution  is:

This is the series representation of  (  are free parameters.)

(c) Find the series representation of the IVP  with .
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Algorithm:

1. Plug IVP into  to get your .

2. Plug these into your equations from above.

Ordinary Point
.

Def:  is an ordinary point is . Otherwise, singular point.

Example: . Find interval for series soln.

 <- note, magnitude, not absolute value

Interval: 

Magnitude of complex number : .
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