Series Solutions of Linear Systems

Series Solutions of Linear Systems

Power Series

To best fit a function, we can take higher degree polynomials called Taylor Polynomials. Polynomials of infinite degree are called Power Series. The Taylor Series of y(x) centered at x=a is given by:

$$T(x) = \sum_{n=0}^{\infty} rac{y^{(n)}(a)}{n!} (x-a)^n.$$

Note: Maclaurin series is Taylor Series where x = 0.

So y(x) = T(x) in the interval of convergence.

Part of a power series calculation:

Let $y=\sum_{n=0}^\infty a_n x^n$ be a series representation of the function y=y(x) on an interval I containing 0 .

(a) Express $(\star)(2-x)y''+2y$ as a power series on the interval I.

Algorithm:

- 1. Take the derivatives of y and plug them into (\star) .
- 2. Then take each sigma and perform a **shift** to a common term (ex: n = 0).
- 3. Write as a single summation:

$$\sum_{n=0}^{\infty} [2(n+2)(n+2)a_{n+2} - (n+1)(n)a_{n+1} + 2a_n]x^n$$

(b) Find the coefficients for (\star) when $y=\sum_{n=0}^\infty a_n x^n.$

Algorithm:

- 1. Set inside of the single summation from (a) and set to 0: $2(n+2)(n+2)a_{n+2} (n+1)(n)a_{n+1} + 2a_n = 0.$
- 2. Solve for a_{n+2} . This is our **recurrence relation**.
- 3. Now you can calculate n=0, n=1, etc to get the coefficients in terms of c_0, c_1 .

4. Write it out: The series rep. of the solution
$$y = \sum_{n=0}^{\infty} a_n x^n$$
 is:
 $= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$
 $= a_0 + a_1 x + (-\frac{1}{2}a_0)x^2 + (-\frac{1}{12}a_0 - \frac{1}{6}a_1)x^3\dots$
 $= a_0(1 - \frac{1}{2}x^2 - \frac{1}{12}x^3 + \dots) + a_1(x - \frac{1}{6}x^3)$
This is the series representation of (+) (a_0 - a_1) a_1 + \dots

This is the series representation of (\star) (a_0,a_1 are free parameters.)

(c) Find the series representation of the IVP (\star) with y(0)=1,y'(0)=-1.

Algorithm:

- 1. Plug IVP into y, y', y'' to get your a_0, a_1 .
- 2. Plug these into your equations from above.

Ordinary Point

 $P_0(x)y''+P_1(x)y'+P_2(x)y=0.$ Def: x_0 is an ordinary point is $P_0(x_0)
eq 0$. Otherwise, singular point.

Example: $(x^2+1)y''-(7-x)y'+y=0$. Find interval for series soln. $P_0(x)=x^2+1=0$ $x^2=-1$ $x=\pm i$ ho=|0-i|=1 <- note, magnitude, not absolute value ho=|0-(-i)|=1

Interval: (0-1,0+1)=(-1,1)Magnitude of complex number a+bi: $\sqrt{a^2+b^2}$.