Section 6.3 The RLC Circuit

Question 3: Find the current in the RLC circuit, assuming that $E(t)=0$ for $t>0$, given $R=2 \Omega$ $\mathrm{L}=0.1 \mathrm{HC}=0.01 \mathrm{~F} \quad \mathrm{Q}_{0}=2 \mathrm{C} \quad \mathrm{I}_{0}=0 \mathrm{~A}$

This problem involves free oscillation as $E(t)=0$ for $t>0$ and thus we use equation 6.3.8 from our book:

$$
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=0
$$

Plugging our given values we get end with equation:

$$
0.1 Q^{\prime \prime}+2 Q^{\prime}+\frac{1}{0.01} Q=0
$$

First, we will look at the characteristic polynomial of our equation, which is:

$$
0.1 r^{2}+2 r+\frac{1}{0.01}=0
$$

which has complex roots given by the quadratic formula

$$
r=\frac{-2 \pm \sqrt{2^{2}-\left(4 * 0.1 * \frac{1}{0.01}\right)}}{2 * 0.1} ; r_{1}=-10+30 i \text { and } r_{2}=-10-30 i .
$$

Then, we plug this into our solution for constant coefficients homogenous second order differential equations and we obtain:

$$
Q=e^{-10 t}\left(C_{1} \cos (30 t)+C_{2} \sin (30 t)\right) .
$$

Let's differentiate the equation so that we can then plug in our initial values and obtain our C_{1} and C_{2}.
Using the Power rule to differentiate:

$$
\begin{gathered}
Q^{\prime}=\frac{d Q}{d t}\left(e^{-10 t}\left(C_{1} \cos (30 t)+C_{2} \sin (30 t)\right)\right) \\
Q^{\prime}=\frac{d Q}{d t}\left(e^{-10 t}\right) *\left(C_{1} \cos (30 t)+C_{2} \sin (30 t)\right)+e^{-10 t} * \frac{d Q}{d t}\left(C_{1} \cos (30 t)+C_{2} \sin (30 t)\right) \\
Q^{\prime}=-10 e^{-10 t}\left(C_{1} \cos (30 t)+C_{2} \sin (30 t)\right)+e^{-10 t}\left(30 C_{2} \cos (30 t)-30 C_{1} \sin (30 t) .\right.
\end{gathered}
$$

Our initial values are $Q_{0}=2 C$ and $I_{0}=-2 A$, solve for C_{1} and C_{2} :

$$
\begin{gathered}
Q(0)=e^{-10(0)}\left(C_{1} \cos (30(0))+C_{2} \sin (30(0))\right)=2 ; \\
e^{0}\left(C_{1} \cos (0)+C_{2} \sin (0)\right)=2 ; \\
1\left(C_{1}(1)+C_{2}(0)\right)=2 ; C_{1}=2
\end{gathered}
$$

Using our now found C_{1} and $\mathrm{I}_{0}=2 \mathrm{~A}$:

$$
\begin{gathered}
Q^{\prime}(0)=-10 e^{0}\left(2 \cos (0)+C_{2} \sin (0)\right)+e^{0}\left(30 C_{2} \cos (0)-30(2) \sin (0)\right)=0 \\
Q^{\prime}(0)=-10(2+0)+\left(30 C_{2}\right)=-20+30 C_{2}=0 ; C_{2}=\frac{20}{30}=\frac{2}{3} .
\end{gathered}
$$

Plugging our C_{1} and C_{2} back into our general solution gives us:

$$
Q=e^{-10 t}\left(2 \cos (30 t)+\frac{2}{3} \sin (30 t)\right)
$$

which now we differentiate by power rule once again to obtain our current and our solution:

$$
\begin{gathered}
\frac{d Q}{d t}=\frac{d Q}{d t}\left(e^{-10 t}\left(2 \cos (30 t)+\frac{2}{3} \sin (30 t)\right)\right. \\
\frac{d Q}{d t}=\left(\frac{d Q}{d t}\left(e^{-10 t}\right) *\left(2 \cos (30 t)+\frac{2}{3} \sin (30 t)\right)\right)+\left(e^{-10 t} * \frac{d Q}{d t}\left(\left(2 \cos (30 t)+\frac{2}{3} \sin (30 t)\right)\right)\right. \\
Q^{\prime}=-10 e^{-10 t}\left(2 \cos (30 t)+\frac{2}{3} \sin (30 t)\right)+e^{-10 t}(20 \cos (30 t)-60 \sin (30 t) \\
Q^{\prime}=-e^{-10 t}\left(10\left(2 \cos (30 t)+\frac{2}{3} \sin (30 t)\right)-20 \cos (30 t)+60 \sin (30 t)\right) \\
Q^{\prime}=-e^{-10 t}\left(20 \cos (30 t)+\frac{20}{3} \sin (30 t)-20 \cos (30 t)+60 \sin (30 t)\right) \\
Q^{\prime}=-e^{-10 t}\left(\frac{180+20}{3} \sin (30 t)\right) \\
I=-\frac{200}{3} e^{-10 t} \sin (30 t)
\end{gathered}
$$

