Benjamin Tolbert - MAT 2680 Differential Equations

Project \#2 - Section 6.3 - Problem \#2 - 11/20/2023

Find the current in the RLC circuit, assuming that assuming that $\mathrm{E}(\mathrm{t})=0$ for $\mathrm{t}>0$.
2) $R=2$ ohms $; L=.05$ henrys; $C=.01$ farads; $Q_{0}=2$ coulombs; $I_{0}=-2$ coulombs

Since we know the values for R, L, and $\mathrm{C}, \& \mathrm{E}(\mathrm{t})=0$ for $\mathrm{t}>0$, that must mean the RLC circuit is in free oscillation. In that case, the values must be plugged into the equation:

$$
\begin{gathered}
\mathrm{LQ}^{\prime \prime}+\mathrm{RQ}^{\prime}+\frac{1}{\mathrm{C}} \mathrm{Q}=0 \\
0.5 \mathrm{Q}^{\prime \prime}+2 \mathrm{Q}^{\prime}+100 \mathrm{Q}=0
\end{gathered}
$$

When converted, the characteristic equation is:

$$
0.5 r^{2}+2 r+100=0
$$

Afterwards, the roots for the characteristic equation must be found:

$$
\begin{gathered}
r=\frac{-R \pm \sqrt{R^{2}-4 L / C}}{2 L} \\
r=\frac{-(2) \pm \sqrt{(2)^{2}-4(0.5)(100)}}{2(0.5)} \\
r=-2 \pm \sqrt{-196} \\
r=-2 \pm 14 i \\
r_{1}=-\frac{R}{2 L}+i \omega_{1} ; r_{2}=-\frac{R}{2 L}-i \omega_{1} \\
r_{1}=-2+14 i ; r_{2}=-2-14 i
\end{gathered}
$$

In the case of this circuit, it is underdamped as $\mathrm{R}<\sqrt{4 L / C}(2<\sqrt{200})$. The roots, r 1 and r 2 have also been found. From there, the general solution is:

$$
\begin{aligned}
& Q=e^{-R t / 2 L}\left(c_{1} \cos \omega_{1} t+c_{2} \sin \omega_{1} t\right) \\
& Q=e^{-2 t}\left(c_{1} \cos (14 t)+c_{2} \sin (14 t)\right)
\end{aligned}
$$

Differentiating the solution and collecting like terms gives:

$$
Q^{\prime}=-2 e^{-2 t}\left(c_{1} \cos (14 t)+c_{2} \sin (14 t)\right)+14 e^{-2 t}\left(-c_{1} \sin (14 t)+c_{2} \cos (14 t)\right)
$$

To solve the initial value problem of $\mathrm{Q}_{0}=2$ coulombs; $\mathrm{I}_{0}=-2$ coulombs, t must be set to 0 for Q and Q^{\prime} to equal Q_{0} and I_{0} respectively.

$$
\begin{gathered}
Q(0)=e^{-2(0)}\left(c_{1} \cos (14(0))+c_{2} \sin (14(0))\right)=2 \\
Q(0)=e^{0}\left(c_{1} \cos (0)+c_{2} \sin (0)\right)=2 \\
Q(0)=1\left(c_{1} \cos (0)+c_{2} \sin (0)\right)=2 \\
Q(0)=1\left(c_{1}+0\right)=2 \\
Q(0)=c_{1}=2 \\
c_{1}=2
\end{gathered}
$$

With c_{1} found, it can be plugged into Q^{\prime} to find c_{2}.

$$
\begin{aligned}
& Q^{\prime}(0)=-2 e^{-2(0)}\left(c_{1} \cos (14(0))+c_{2} \sin (14(0))\right)+14 e^{-2(0)}\left(-c_{1} \sin (14(0))+c_{2} \cos (14(0))\right)=-2 \\
& Q^{\prime}(0)=-2 e^{0}\left(c_{1} \cos (0)+c_{2} \sin (0)\right)+14 e^{0}\left(-c_{1} \sin (0)+c_{2} \cos (0)\right)=-2 \\
& Q^{\prime}(0)=-2\left(c_{1}+0\right)+14\left(0+c_{2}\right)=-2 \\
& Q^{\prime}(0)=-2\left(c_{1}+0\right)+14\left(0+c_{2}\right)=-2 \\
& Q^{\prime}(0)=-2 c_{1}+14 c_{2}=-2 \\
& Q^{\prime}(0)=-2(2)+14 c_{2}=-2 \\
& Q^{\prime}(0)=-4+14 c_{2}=-2 \\
& Q^{\prime}(0)=14 c_{2}=2 \\
& Q^{\prime}(0)=c_{2}=\frac{2}{14} \\
& c_{2}=\frac{1}{7}
\end{aligned}
$$

With both c_{1} and c_{2} found, it can be plugged into the solution, Q to give:

$$
Q=e^{-2 t}\left(2 \cos (14 t)+\frac{1}{7} \sin (14 t)\right)
$$

Finally, differentiating Q will yield the current, I.

$$
\begin{gathered}
Q^{\prime}=-2 e^{-2 t}\left(2 \cos (14 t)+\frac{1}{7} \sin (14 t)\right)+14 e^{-2 t}\left(-2 \sin (14 t)+\frac{1}{7} e^{-2 t} \cos (14 t)\right) \\
Q^{\prime}=-4 e^{-2 t} \cos (14 t)-\frac{2}{7} e^{-2 t} \sin (14 t)-28 e^{-2 t} \sin (14 t)+2 e^{-2 t} \cos (14 t) \\
Q^{\prime}=-4 e^{-2 t} \cos (14 t)-\frac{2}{7} e^{-2 t} \sin (14 t)-28 e^{-2 t} \sin (14 t)+2 e^{-2 t} \cos (14 t) \\
Q^{\prime}=-2 e^{-2 t} \cos (14 t)-\frac{198}{7} e^{-2 t} \sin (14 t) \\
I=e^{-2 t}\left(-2 \cos (14 t)-\frac{198}{7} \sin (14 t)\right)
\end{gathered}
$$

