Linear Second Order Equations Formula Sheet

Linear Second Order Equations

$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$

Constant Coefficient Homogenous Equations

For everything, remember to check linear independence: $\frac{y_{1}}{y_{2}}$ is not constant.

Different Roots

$y^{\prime \prime}-5 y^{\prime}+4 y=0$
Characteristic Polynomial: $r^{2}-5 r+4=(r-4)(r-1)$. Roots $=1,4$.
Basic Soln: $y_{1}=e^{r_{1} x}, y_{2}=e^{r_{2} x}$

Repeated Roots

$y^{\prime \prime}+18 y^{\prime}+81 y=0$
Characteristic Polynomial: $r^{2}+18 r+81=(r+9)(r+9)$. Roots $=-9,-9$.
Basic Soln: $y_{1}=e^{r_{1} x}, y_{2}=x e^{r_{1} x}$

Complex Roots

$y^{\prime \prime}+16 y^{\prime}+145 y=0$
Roots: $-8+9 i,-8-9 i$, Format: $\lambda \pm \omega i$
Basic Soln: $y_{1}=e^{\lambda t} \sin (\omega t), y_{2}=e^{\lambda t} \cos (\omega t)$

Second Order Nonhomogenuous

$y^{\prime \prime}-5 y^{\prime}+4 y=22-8 t$
First, solve the associated homogenous eqn: $y^{\prime \prime}-5 y^{\prime}+4 y=0$ to get your y_{1}, y_{2}.

Let y_{p} be a particular solution of the nonhomogenous solution.

Then look at the RS and try $y_{p}=A x+B$.
So, $y_{p}^{\prime}=A$ and $y_{p}^{\prime \prime}=0$.
Then plug these in to $y^{\prime \prime}-5 y^{\prime}+4 y=22-8 t$ and solve for A and B .
The general solution is $y(t)=y_{p}+c_{1} y_{1}+c_{2} y_{2}$.

Principle of Superposition

Let $y_{p_{1}}$ be particular soln of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)$
Let $y_{p_{2}}$ be particular soln of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{2}(x)$
Then $y_{p_{1}}+y_{p_{2}}$ is a soln of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f_{1}(x)+f_{2}(x)$

Method of Undetermined Coefficients

$y^{\prime \prime}-4 y^{\prime}+3 y=e^{3 x}\left(6+8 x+12 x^{2}\right)$. Note if clause in RS parans is constant, just do $y_{p}=A e^{3 x}$

1. Write $y_{p}=u e^{3 x}$, find $y^{\prime}, y^{\prime \prime}$:
$y^{\prime}=u^{\prime} e^{3 x}+3 u e^{3 x}$
$y^{\prime \prime}=u^{\prime \prime} e^{3 x}+3 u^{\prime} e^{3 x}+3 u^{\prime} e^{3 x}+9 u e^{3 x}=e^{3 x}\left(u^{\prime \prime}+6 u^{\prime}+9 u\right)$
a. Shortcut: For $y=u e^{\alpha x}, y^{\prime \prime}=e^{\alpha x}\left(u^{\prime \prime}+2 \alpha u^{\prime}+\alpha^{2} u\right)$
2. Plug it in to LS. Results in $e^{3 x}\left(u^{\prime \prime}+2 u^{\prime}\right)=e^{3 x}\left(12 x^{2}+8 x+6\right)$
3. Try particular soln $u_{p}=A x^{2}+B x+C$ with derivatives $u^{\prime}=2 A x+b, u^{\prime \prime}=2 A$
4. Plug in to left side, so $(4 A) x+(2 A+2 B)=12 x^{2}+8 x+6$
5. This is no good! Doesn't match exponents of polynomial!
6. Instead, try higher power $u_{p}=A x^{3}+B x^{2}+C x+D$, plug in, and solve for u_{p}. Once you have it, remember to plug in to $y=u * e^{3 x}$.

Reduction Of Order

$x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=x^{2}$. Given $y_{1}=e^{x}$ for associated homog eqn.

- Find general solution for nonhomog equation.

1. Plug y_{1} into var. of params:

- $y=u * y_{1}$
- $y^{\prime}=u^{\prime} y_{1}+u y_{1}$ (diff)
- $y^{\prime \prime}=\ldots$ ((diff again)
- Plug these into the nonhomog eqn.
- End up with something like $e^{x}\left(x u^{\prime \prime}-u^{\prime}\right)$. To make it first order, let $u^{\prime}=z$.
- Rearrange resulting eqn into recognizable form: $z^{\prime}-\frac{1}{x} z=x e^{-x}$
- Solve using Chapter 2 techniques. Seperable Eqn or var of params.
- Now you have z. We want u, our mystery function. $z=u^{\prime}$, so integrate z.
- $u=\int z d x$
- Once you have u, plug it in to $y=u * y_{1}$. This is our general solution for our nonhomog. eqn.
- Find y_{p} by setting c_{1} and c_{2} to something simple like 0 .
- We know $y 1$, it was given.
- Solve for $y 2$ in $y=y_{p}+c_{1} y_{1}+c_{2} y_{2}$
- Find a $y_{p_{2}}$ by setting c_{1} and c_{2} to something else.
- Then $y_{2}=y_{p_{1}}-y_{p_{2}}$
- Plug it all in!

Variation of Parameters (2nd Order Nonhomog)

$x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x^{9 / 2}$. Given $y_{1}=x, y_{x}=x^{2}$ form a fundamental set of solns of assoc. homog. eqn. Find particular and general soln.

1. Toolbox!
2. $y_{p}=u_{1} y_{1}+u_{2} y_{2}$
3. Assume $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$
4. Take $y_{p}=u_{1} y_{1}+u_{2} y_{2}=u_{1} x+u_{2} x^{2}$ and find $y^{\prime}, y^{\prime \prime}$. Use $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ to simplify.
5. Plug $y, y^{\prime}, y^{\prime \prime}$ into the nonhomog eqn, simplify.
6. Once simplified, combine this simplified equation with our assumption $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$.
7. This is now a 2×2 linear system with vars $u_{1}^{\prime}, u_{2}^{\prime}$. Solve.
8. Once solved, stick into $y_{p}=u_{1} y_{1}+u_{2} y_{2}$. Let constants be 0 . This is our particular solution.
9. General solution given by $y=y_{p}+c_{1} y_{1}+c_{2} y_{2}$ as always.
