Linear Second Order Equations Formula Sheet

Linear Second Order Equations

y'' + p(x)y' + q(x)y = f(x)

Constant Coefficient Homogenous Equations

For everything, remember to check linear independence: $rac{y_1}{y_2}$ is not constant.

Different Roots

y''-5y'+4y=0Characteristic Polynomial: $r^2-5r+4=(r-4)(r-1)$. Roots = 1,4. Basic Soln: $y_1=e^{r_1x},y_2=e^{r_2x}$

Repeated Roots

y''+18y'+81y=0Characteristic Polynomial: $r^2+18r+81=(r+9)(r+9)$. Roots = -9,-9. Basic Soln: $y_1=e^{r_1x},y_2=xe^{r_1x}$

Complex Roots

Second Order Nonhomogenuous

y''-5y'+4y=22-8tFirst, solve the associated homogenous eqn: y''-5y'+4y=0 to get your $y_1,y_2.$

Let y_p be a particular solution of the nonhomogenous solution.

Then look at the RS and try $y_p = Ax + B$. So, $y'_p = A$ and $y''_p = 0$. Then plug these in to y'' - 5y' + 4y = 22 - 8t and solve for A and B. The general solution is $y(t) = y_p + c_1y_1 + c_2y_2$.

Principle of Superposition

Let y_{p_1} be particular soln of $y''+p(x)y'+q(x)y=f_1(x)$ Let y_{p_2} be particular soln of $y''+p(x)y'+q(x)y=f_2(x)$ Then $y_{p_1}+y_{p_2}$ is a soln of $y''+p(x)y'+q(x)y=f_1(x)+f_2(x)$

Method of Undetermined Coefficients

 $y''-4y'+3y=e^{3x}(6+8x+12x^2)$. Note if clause in RS parans is constant, just do $y_p=Ae^{3x}$

- 1. Write $y_p = ue^{3x}$, find y', y'': $y' = u'e^{3x} + 3ue^{3x}$ $y'' = u''e^{3x} + 3u'e^{3x} + 3u'e^{3x} + 9ue^{3x} = e^{3x}(u'' + 6u' + 9u)$ a. Shortcut: For $y = ue^{\alpha x}, y'' = e^{\alpha x}(u'' + 2\alpha u' + \alpha^2 u)$
- 2. Plug it in to LS. Results in $e^{3x}(u^{\prime\prime}+2u^\prime)=e^{3x}(12x^2+8x+6)$
- 3. Try particular soln $u_p = Ax^2 + Bx + C$ with derivatives u' = 2Ax + b, u'' = 2A
- 4. Plug in to left side, so $(4A)x + (2A+2B) = 12x^2 + 8x + 6$
 - 1. This is no good! Doesn't match exponents of polynomial!
- 5. Instead, try higher power $u_p = Ax^3 + Bx^2 + Cx + D$, plug in, and solve for u_p . Once you have it, remember to plug in to $y = u * e^{3x}$.

Reduction Of Order

 $xy^{\prime\prime}-(2x+1)y^{\prime}+(x+1)y=x^2.$ Given $y_1=e^x$ for associated homog eqn.

- Find general solution for nonhomog equation.
 - 1. Plug y_1 into var. of params:
 - $y = u * y_1$
 - $y' = u'y_1 + uy_1$ (diff)
 - $y'' = \dots$ ((diff again)
 - Plug these into the nonhomog eqn.
 - End up with something like $e^x(xu''-u')$. To make it first order, let u'=z.
 - Rearrange resulting eqn into recognizable form: $z' \frac{1}{x}z = xe^{-x}$
 - Solve using Chapter 2 techniques. Seperable Eqn or var of params.
 - Now you have z. We want u, our mystery function. z = u', so integrate z.
 - $u = \int z dx$
 - Once you have u, plug it in to y = u * y₁. This is our general solution for our nonhomog. eqn.
 - Find y_p by setting c_1 and c_2 to something simple like 0.
 - We know y1, it was given.
 - Solve for y2 in $y=y_p+c_1y_1+c_2y_2$
 - Find a y_{p_2} by setting c_1 and c_2 to something else.
 - Then $y_2=y_{p_1}-y_{p_2}$
 - Plug it all in!

Variation of Parameters (2nd Order Nonhomog)

 $x^2y'' - 2xy' + 2y = x^{9/2}$. Given $y_1 = x, y_x = x^2$ form a fundamental set of solns of assoc. homog. eqn. Find particular and general soln.

- 1. Toolbox!
 - 1. $y_p = u_1 y_1 + u_2 y_2$
 - 2. Assume $u_1^\prime y_1 + u_2^\prime y_2 = 0$
- 2. Take $y_p=u_1y_1+u_2y_2=u_1x+u_2x^2$ and find $y^\prime,y^{\prime\prime}.$ Use $u_1^\prime y_1+u_2^\prime y_2=0$ to simplify.
- 3. Plug $y,y^{\prime},y^{\prime\prime}$ into the nonhomog eqn, simplify.

1. Once simplified, combine this simplified equation with our assumption $u_1^\prime y_1 + u_2^\prime y_2 = 0.$

- 2. This is now a 2x2 linear system with vars $u_1^\prime, u_2^\prime.$ Solve.
- 4. Once solved, stick into $y_p=u_1y_1+u_2y_2$. Let constants be 0. This is our particular solution.
- 5. General solution given by $y = y_p + c_1 y_1 + c_2 y_2$ as always.