MAT 2680 Differential Equations Project 2

Ethan Lo, Emily Murphy

November 2023

1 Section 6.1 Problem 11

A unit mass hangs in equilibrium from a spring with a constant $k=\frac{1}{16}$. Starting at $t=0$, a force $F(t)=3 \sin (t)$ is applied to the mass. Find its displacement for $t>0$.

To start out, we need to derive the Differential Equation we'll be working with for this problem. The textbook gives us a general equation of motion for mass:

$$
m y^{\prime \prime}+c y^{\prime}+k y=F(t)
$$

The problem gives us a few given values: m, k, and $F(t)$. Since we're working with a unit mass, the mass in our problem will be $1 g$. Section 6.1 focuses specifically on working with undampened springs, meaning our value of c will be 0 . Lastly, we're provided $F(t)=3 \sin t$. Plugging our given values into the equation of motion for mass, we get:

$$
y^{\prime \prime}+\frac{1}{16} y=3 \sin (t)
$$

Now, we have a second-order linear non-homogeneous equation! Let's go through what finding the solution for this equation looks like.

First, we need to find the solution of the associated homogeneous equation:

$$
\begin{array}{r}
y^{\prime \prime}+\frac{1}{16} y=0 \\
r^{2}+\frac{1}{16}=0 \\
r^{2}=\frac{-1}{16} \\
r=\frac{1}{4} i
\end{array}
$$

Since this is a case 3 homogeneous second-order equation, the solution to y_{h} will be:

$$
y_{h}=c_{1} \sin \frac{1}{4} t+c_{2} \cos \frac{1}{4} t .
$$

Now that we have our y_{h}, we now need to find our particular solution y_{p}. To do this, let's start off by assuming that y_{p} will take the form of $A \sin t$. Then,

$$
\begin{gathered}
\mathrm{y}_{p}=A \sin t \\
\mathrm{y}_{p}^{\prime}=A \cos t \\
\mathrm{y}_{p}^{\prime \prime}=-A \sin t
\end{gathered}
$$

Plugging back into our original equation:

$$
\begin{gathered}
-A \sin t-\frac{1}{16}(A \sin t)=3 \sin t \\
\frac{-15}{16} A \sin t=3 \sin t \\
\frac{-15}{16} A=3 \\
A=\frac{-16}{15} * 3 \\
=\frac{-48}{15} \\
=\frac{-16}{5}
\end{gathered}
$$

Bringing our y_{h} and y_{p} together, we get the general solution of:

$$
y(t)=\frac{-16}{5} \sin t+c_{1} \sin \frac{1}{4} t+c_{2} \sin \frac{1}{4} t
$$

This general solution represents the displacement or change in position acting on our mass at some time t. However, we know from the problem that at $t=0$, our mass is hanging in equilibrium. When something is in equilibrium, that implies that its positionality, or $y(0)$ will be equal to 0 . Therefore, $y^{\prime}(0)=0$ as well. Remember that for initial value problems, we're typically given values for $y(t)$ and $y^{\prime}(t)$.

$$
\begin{gathered}
y(0)=\frac{-16}{5} \sin (0)+c_{1} \sin (0)+c_{2} \cos (0) \\
y^{\prime}(0)=\frac{-16}{5} \cos (0)+\frac{1}{4} c_{1} \cos (0)-\frac{1}{4} c_{2} \sin (0) \\
0=c_{2} \\
0=\frac{-16}{5}+\frac{1}{4} c_{1} \\
\frac{16}{5}=\frac{1}{4} c_{1} \\
\frac{64}{5}=c_{1}
\end{gathered}
$$

Therefore, the particular solution for the displacement of our mass on an undampened spring at $t>0$ can be found with the equation:

$$
y(t)=\frac{-16}{5} \sin (t)+\frac{64}{5} \sin \frac{1}{4}(t)
$$

