MAT 2680 Differential Equations Project 1

Ethan Lo, Emily Murphy

October 2023

1 Section 4.1 Problem 13

A super bread dough increases in volume at a rate proportional to the volume V present. If V increases by a factor of 10 in 2 hours and $V(0)=V_{0}$, find V at any time t. How long will it take for V to increase to $100 V_{0}$?

We know V is increasing by a constant rate, so the rate of change in V, or V^{\prime}, will be equivalent to the volume present V proportional to a constant, which we'll call k.

Writing that out, we have $V^{\prime}=k V$.
$V^{\prime}=k V$ can be rewritten into a homogenous linear equation, $V^{\prime}-k V=0$. Accordingly, we know that $p(t)=-k$, and can solve for our general solution:

$$
\begin{aligned}
V & =c e^{-\int p(t) d t} \\
& =c e^{-\int-k d t} \\
& =c e^{\int k d t} \\
& =c e^{k t}
\end{aligned}
$$

Our general solution is $V=c e^{k t}$.
We're given some initial values that we can use to find a particular solution. We learn that V increases by a factor of 10 in two hours, and we learn that $V(0)=V_{0}$. Let's first take a look at $V(0)=V_{0}$.

We can find $V(0)$ by plugging in $t=0$ to $V=c e^{k t}$ on the right side of our general solution:

$$
\begin{aligned}
c e^{k(0)} & =V_{0} \\
e^{k(0)} & =1 \\
c \cdot 1 & =V_{0}
\end{aligned}
$$

So that leaves us with the expression: $c=V_{0}$.
Since these two are equal, we can then plug in V_{0} for c in our general solution and come out with $V=V_{0} e^{k t}$.

We still have other initial values to work with, so let's use those to find our particular solution.

We're given that V increases by a factor of 10 in 2 hours. Another way to think about this is that the initial volume V_{0} is multiplied by 10 to reach the final volume V after 2 hours: $V(2)=10 V_{0}$.

Let's plug this into our previous function $V=V_{0} e^{k t}$ and solve for k .

$$
\begin{aligned}
V & =V_{0} e^{k t} \\
10 V_{0} & =V_{0} e^{2 k} \\
10 & =e^{2 k} \\
\ln (10) & =2 k \\
k & =\frac{1}{2} \ln (10) .
\end{aligned}
$$

This is our particular solution - the equation to find V at any time t :

$$
V=V_{0} \cdot e^{\frac{1}{2} \ln (10) t}
$$

We now have a particular solution that can find V at any time t. But how long will it take for V to increase to $100 V_{0}$?

Like last time, we can represent this increase as $V=100 V_{0}$. Using our new particular solution that we just got, let's set up our equation to say:

$$
\begin{aligned}
V_{0} e^{\frac{1}{2} \ln (10) t} & =100 \cdot V_{0} \\
e^{\frac{1}{2} \ln (10) t} & =100 \\
\frac{1}{2} \ln (10) t & =\ln (100) \longrightarrow \ln (100)=2 \ln (10) \\
\frac{1}{2} \ln (10) t & =2 \ln (10) \\
\frac{1}{2} t & =2 \\
t & =4
\end{aligned} .
$$

Therefore, $t=4$ hours, so it will take 4 hours for the bread dough to increase to 100 times its initial volume.

