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Chapter 1

Lotka-Volterra ( Predator prey)

We consider time-dependent growth of a species whose population size will be represented by a
function x(t) (say greenflies!). If we assume the food supply of this species is unlimited it scems
reasonable that the rate of growth of this population would be proportional to the current population
size, as there are more potential couplings, i.e.

dr

5 S o= z(t) = Ae*, (1.1)
with @ > 0 the growth (birth ratio per person) and A = z(0) the initial population size. The
clear problem with this model is that the population grows without bound over time. One method
to correct this problem one might specify that the the growth rate @ becomes a function of the
population size, decreasing as z increascs. Alternatively we could model a second population y(t)
which represents a second species, ladybirds, which prey on the greenflies. In this case the greenfly
population z will decrease proportionally to the number of ladybirds y multiplied by the number
of greenflies z, i.e. the number of interactions of the two species which may lead to a sad little
greenfly funeral. This law will be in the form

dx

qp = ox —bay. (1.2)

with b the rate at which fatal interactions occur, But we must then also model the changing
Ladybird population y(t). We assume in the absence of greenflies it will decrease as its food supply
has vanished.

qL ey (1.3)
However it will also grow proportionally to the interactions of the two species (at some rate d), so
dy
E = =cy+ d:!:y {1."1}
So we have a coupled set of ordinary differential equations
dz
'l'ﬁ =dar - Eu:y, (1.5]
dy
= v +dzy
1
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Figure 1.1: (a) A plot of the solutions z(t) and y(t) for ¢t € [0,50], for the set (a,b,c,d) =
(2/3,4/3,1,1), z(0) =1, y(0) = 1. (b) the phase plot of (a).

This system represents both the individual growth/decay of the species (self interactions) as well
as their mutual interaction. This is the so-called Lotka-Volterra (predator-prey) system discovered
separately by Alfred J. Lotka (1910) and Vito Volterra (1926). In more modern theories there will
be multiple species each with their own interactions but we will limit ourselves to this simpler but
highly instructive classical system. An example solution is shown for the parameters (a,b,c,d) =
(2/3,4/3,1,1), z(0) = 1, y(0) = 1 in Figure 1.1(a). We see the peaks in the greenfly population
which then naturally increase the ladyhird food supply, its population then increases. In turn this
leads to the greenfly population dropping as they get eaten, then this decrease in food supply leads
to the ladybird population to drop as food becomes competitive. This periodic behavior is made
clear using & Phase Plot, as shown in Figure 1.1(b), in this case a parametcerised plot (z(t), y(t)),
a geometric plot of the variables of the system (2-D here as there are two variables). Closed curves
in phase space indicate a periodic relationship between the two parameters,

1.0.1 Analysis and solutions

Parameter reduction

The parameters (a,b,c,d) play a key role in determining the system’s behaviour. However, tIJ_LE}'
are not all independent. If we make the transformations r — i(c/d) and y = §(a/d) and t = t/a
then the system can be written as

-
P (1.6)
dy W
FT i (-3 + z3). (1.7)
where
Y =c/a (1.8)
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Figure 1.2: Phase and parametric solutions to the scaled Lotka-Volterra equation (1.6). (a) show
phase curves for y = 1, § = 1, z(0) = 1 and y(0) a set of values from 0.01, the outer curve, to
0.9 the inner curve, all of which circle the equilibrium z = y = 1 with decreasing radius. (b)
the parametric solutions for y(0) = 0.01, the sharp curves which peak /6, and y(0) = 0.9 the low
amplitude sinusoidal curves.

Dynamic Solutions

We can solve this system using separation of variables, dividing the two equations (and dropping
hats) we obtain

dy w(-1+=zx 1—y 1-x
dtnz(l_y).#*dy—y-u——‘}'d:r = (19)
Intergating both sides of (1.9) we obtain
log(y) —y = —y(log(z) — z) + C. (1.10)

Whe'm the constant C can be set by some initial condition (z(0),4(0)). Unfortunately it is not
possible to write this relationship in explicit form. This gives us the phase curves determined by
the value of the constant C Parameterising this curve then gives the solutions x(¢) and y(¢), i.e. we
m}:]d rcht}me some behaviour for z(t), (1.10) will then determine the behaviour of y. We will find
this kind of solution is common to such systems.

In a homework sheet we will use this relationship to show that the phase curves must be closed
curves,

Equlibria
Looking at the R.H.S of (1.6) we can see there are two possible equilibria ﬁ{ — %’f =0,Yt
(z=0,y=0), and (x =1,y =1) (1.11)

(in dynamical systems you will call these fixed points or steady state solutions). The z =y =0

solution corresponds to both populations being extinct! The second corresponds to the non-zero
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population densities at which the population sizes will remain fixed. In Figure 1.2(a) we see the
varying behaviour of the closed curves phase curves of the system. All curves encircle the equilibrium
at (1,1) and as the initial conditions get closer to the equilibrium value the radius of the curve
decreases. In Figure 1.2(b) we see the dramatic variety of morphology the parametric curves
can cxhibit. When the pair (z(0), y(0)) are initially close to the equilibrium the curves have low
amplitude sinusoidal shape, whilst if (0) is initially small the curves have extremely sharp gradients
and dramatic rates of change at the maxima.

Stability 7

We have our dynamic solutions (1.10) and the fixed point equlibria (1.11). A number of questions
begged to be asked at this point,

1. Can one or both of the species die out if they are both non-zero at some time ¢7

2. Can an oscillating pair of populations relax to their non-zero fixed values, i.e. do the popu-
lations ever settle?

An immediate observation in regards to (i) is that (1.10) only allows = = 0 when ¥ = 0 and vice
versa, so they would have to become extinct simultaneously. The existence of periodic solutions
as shown in Figure 1.2 scems to suggest neither (i) or (ii) can occur, because the system repeats
itself cyclically. A solution which decayed into equilibrium would have to have a phase space
diagram which spiraled inwards. In fact we have a precise means of determining the answear to
such questions which we discuss in the second chapter.

1.1 Summary

1. We have derived a simple model for a predator-pray relationship between two species based
on simple interaction and growth models.

2. We have covered various standard tools for analysing such systems, dynamic solutions, equi-
librium solutions, phase curves.

3. In addition we have raised the notion of stability and reachability of the equilibrium solutions.
The phase curve behaviour we have observed appears to forbid reaching the equilibria forin
out-of-equilibrium states.
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