Solving secondary order ed using reduction of order an variation of parameters

```
5.7 #1) y'+9y=\operatorname{tan}3x
```

$y^{\prime \prime}+9 y \Rightarrow r^{2}+9=0$
$r^{2}=-9 \Rightarrow r= \pm 3 i$
$r=3 i, r=-3$
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)$
$y_{p}=u_{1} y_{1}+u_{2} y_{2}$
$u_{1}=\int \frac{-y_{2} g(x)}{w\left(y_{1}, y_{2}\right)} d x$
$u_{2}=\int-\frac{y_{1} g(x)}{w\left(y_{1}, y_{2}\right)} d$
$y_{1}=\cos (3 x)$
$y_{2}=\sin (3 x)$
$y_{1}^{\prime}=\left((\cos (3 x))^{\prime}=-\sin (3 x) \cdot(3)\right.$
$y_{2}^{\prime}=(\sin (3 x))^{\prime}=\cos (3 x) \cdot 3$
$\omega\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$
$=\cos (3 x) \cos (3 x) \cdot 3-(-\sin (3 x) \cdot 3) \sin (3 x)$
$\omega=3$
$g(x)=\tan 3 x$
$u_{1}=\int-\frac{y_{2} g(x)}{w\left(y_{1}, y_{2}\right)} d$
$=\int-\frac{\sin (3 x) \tan (3 x)}{3} d x=-\frac{1}{3} \int \sin (3 x) \tan (3 x) d x$
$u=\tan (3 x)$
$u^{\prime}=(\tan (3 x))^{\prime}=\sec ^{2}(3 x) \cdot 3 \quad$ integration
$v^{\prime}=\sin (3 x)$
$v=\int \sin (3 x) d x=-\frac{1}{3} \cos (3 x)$
$\int u u^{\prime}=u v-\int u^{\prime} v$
$\tan (3 x)\left(-\frac{1}{3} \cos (3 x)\right)-\int \sec ^{2}(3 x) \cdot 3\left(-\frac{1}{3} \cos (3 x)\right) d x$
$=-\frac{1}{3}\left(-\frac{1}{3} \tan (3 x) \cos (3 x)-\int-\sec ^{2}(3 x) \cos (3 x) d x\right)$
Solving integral
$\left.\int-\sec ^{2}(3 x) \cos (3 x) d x\right)$
$=-\int \sec ^{2}(3 x) \cos (3 x) d x$ Trig identity $\sec (x)=\frac{1}{\cos (x)}$
$=-\int \sec (3 x) d x$
$u-$ sub
$u=3 x$
$d u=3 d x$
$d x=\frac{1}{3} d u$
$=\int \sec (u) \frac{1}{3} d u$
$=-\frac{1}{3} \cdot \int \sec (u) d u$
$=-\frac{1}{3} \ln |\tan (u)+\sec (u)|$
$=-\frac{1}{3} \ln |\tan (3 x)+\sec (3 x)|$
$-\frac{1}{3}\left(-\frac{1}{3} \tan (3 x) \cos (3 x)-\left(-\frac{1}{3} \ln |\tan (4)+\sec (4)|\right)\right)$
$=-\frac{1}{3}\left(-\frac{1}{3} \tan (3 x) \cos (3 x)+\frac{1}{3} \ln |\tan (u)+\sec (u)|+c=u_{1}\right.$
$u_{2}=\int \frac{y_{1} g(x)}{w} d x$
$=\int \frac{\cos (3 x) \tan (3 x)}{3} d x$
$=\frac{1}{3} \cdot \int \cos (3 x) \tan (3 x) d x$
u Sub
$u=3 x$
$d u=3 d$
$d x=\frac{1}{3} d u$
$\frac{1}{3} \cdot \int \cos (u) \tan (u) \frac{1}{3} d u$
$=\frac{1}{3} \cdot \frac{1}{3} \cdot \int \cos (u) \tan (u) d u$
$=\frac{1}{a} \cdot \int \sin (u) d u$
$=\frac{1}{9} \cdot(-\cos (3 x))$
$u_{2}=-\frac{1}{9} \cos (3 x)$
$y_{p}=u_{1} y_{1}+u_{2} y_{2}$
$y_{p}=\left(-\frac{1}{3}\left(-\frac{1}{3} \tan (3 x) \cos (3 x)-\left(-\frac{1}{3} \ln |\tan (u)+\sec (u)|\right)\right)\right) \cos (3 x)$
$+\left(-\frac{1}{9} \cos (3 x)\right) \sin (3 x)$
$=\frac{-2 \cos (3 x)(-\tan (3 x) \cos (3 x)+\ln |\tan (3 x)+\sec (3 x)|)-\sin (6 x)}{18}$
Final Answer everything together
$y=C_{1} \cos (3 x)+C_{2} \sin (3 x)+-2 \cos (3 x)(-\tan (3 x) \cos (3 x)+\ln |\tan (3 x)+\sec (3 x)|)-\sin (6 x)$

