## Project 1 Sec 4.3

General Notes on Elementary Mechanics (pg. 151):
Newton's Second Law of Motion

$$
F=m a
$$

Standard Forms:
Time ( t )
Displacement/ Position (y): $\quad y=y(t)$
Velocity ( v ):
$v=v(t) \quad v=y^{\prime}$
Acceleration (a) $\left(\frac{d v}{d t}\right)$ :
$a=a(t)$
$a=v^{\prime}$

$$
a=y^{\prime \prime}
$$

Force (F):

$$
F=m a
$$

Force of Gravity/ Weight $\left(\mathrm{F}_{\mathrm{g}}\right): \quad \mathrm{F}_{\mathrm{g}}=m \mathrm{~g}$
Resistive Force (k): $\quad k=m a$
Acceleration due to Gravity (g): $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$ (mks); $980 \mathrm{~cm} / \mathrm{s}^{2}$ (cgs); $32 \mathrm{f} / \mathrm{s}^{2}$ (British)

Use Eq. (4.3.4):

$$
F=-m g+F_{1}
$$

Where mg is the force due to gravity and $F_{1}$ is the resisting force of the medium (pg. 152).

If the object is moving upward $(v>=0)$, the resisting force is downward

$$
F_{1}=-k|v|=-k v
$$

Rewrite Eq. (4.3.4) as (4.3.5):

$$
F=-m g-k v
$$

Regardless of the sign of the velocity. From Newton's second law of motion:

$$
F=m a=m v^{\prime}
$$

so (4.3.5) yields:

$$
m v^{\prime}=-m g-k v
$$

## Problem 5:

A stone weighing $1 / 2 \mathrm{lb}$ is thrown upward from an initial height of 5 ft with an initial speed of $32 \mathrm{ft} / \mathrm{s}$. Air resistance is proportional to speed, with $k=1 / 128 \mathrm{lb}-\mathrm{s} / \mathrm{ft}$. Find the maximum height attained by the stone.

Using Form:
$m * v^{\prime}=-m g-k v$
$\frac{1}{64} l b * v^{\prime}=-\frac{1}{64} l b * 32 f t / s^{2}-\frac{1}{128} \frac{l b-s}{f t} * v$
Simplify/Rewrite:
$v^{\prime}+\frac{1}{2} v=-32$
Solve:
$v^{\prime}+\frac{1}{2} v=0$
$\int \frac{d v}{d t}+\frac{1}{2} v d t=0$
$\int \frac{1}{v} d v=\int \frac{1}{2} d t$
$\ln |v|=-\frac{t}{2}+c$
$v=e^{-\frac{t}{2}}$
With the above solution to the complementary equation, the solution for this equation are as follows:
$v=u * e^{-\frac{t}{2}}$
Where:
$u^{\prime} * e^{-\frac{t}{2}}=-32$
So:
$u^{\prime}=-32 * e^{-\frac{t}{2}}=-32$

Hence:
$u=-64 e^{-\frac{t}{2}}+c$
So:
$v=u * e^{-\frac{t}{2}}=-64+c * e^{-\frac{t}{2}}$

Let $V o=32 \mathrm{ft} / \mathrm{s}, t=0$
$32=-64+c * e^{-\frac{0}{2}}$
$c=96$
When $v=0$, find $t$ :
$0=-64+96 * e^{-\frac{t}{2}}$
$t=2 \ln \left(\frac{2}{3}\right)=.811$
Position $=y(t)=y$
$v=y^{\prime}$
$y=\int v$
$y(t)=\int-64+96 * e^{-\frac{t}{2}}$
$y(t)=-64 t-192 * e^{-\frac{t}{2}}+c$
When $t=0$ and $y(t)=5$ :
$5=-64(0)-192 * e^{-\frac{0}{2}}+c$
$5=-192+c$
$c=197$
Position after $t=.811$ :
$y(.811)=-64(.811)-192 * e^{-\frac{.811}{2}}+197=17.1005 f t$

Solution: 17.10 ft

