Name:

Practice Final Exam

1. True/false

1) Cramer's rule can be used on $A x=b$ when $\operatorname{det}(A)=0$.
2) It's possible for a basis of R^{n} to contain the zero vector.
3) Vectors in an orthogonal set are always linearly independent.
4) The row echelon form of a square matrix is unique.
5) For a $n x n$ matrix A, if A is invertible, then A is diagonalizable.
2. Example
1) Provide an example of two parallel victors in an R^{2} space.
2) Give an example of an invertible matrix A such that $A=A^{-1}$.
3) Give one of the standard basis of IR^{3}.
4) Give an example of a transformation $T: R^{2} \rightarrow R^{2}$ that is not linear.
5) Give an example of a 2×2 matrix that don't have real eigenvalues.
3. Let $\mathrm{A}=\left[\begin{array}{ccc}2 & -5 & 5 \\ 0 & 4 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}8 & -6 \\ -4 & -1 \\ 2 & 3\end{array}\right]$, then:
1) $A B=$
2) $B A=$
3) $\operatorname{det}(A B)=$
4) $\operatorname{det}(B A)=$
4. Use the Cramer's Rule to find values for x, y, and z that satisfy the following systems

$$
\begin{aligned}
& -5 x+6 y+4 z=0 \\
& -7 x-8 y+2 z=-20 \\
& 2 x+9 y-z=12
\end{aligned}
$$

5. Find the basis of the subspace R^{4} that consists of all vectors perpendicular to both

$$
\left[\begin{array}{c}
1 \\
0 \\
1 \\
-9
\end{array}\right] \text { and }\left[\begin{array}{c}
0 \\
1 \\
-8 \\
-1
\end{array}\right] \text {. }
$$

6. The matrix $A=\left[\begin{array}{cc}-11 & 3 \\ -6 & -2\end{array}\right]$ has eigenvalues -5 and -8 . Find its eigenvectors.
7. Given that the matrix A has eigenvalues $\lambda_{1}=4$ with corresponding eigenvector $\overrightarrow{v_{1}}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $\lambda_{2}=-4$ with corresponding eigenvector $\overrightarrow{v_{2}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find A .
