<u>3.1</u>

1) Describe an algorithm for finding both, the largest and the smallest integers in a finite sequence of integers.

<u>3.2</u>

3) Show that x^3 is $O(x^4)$ but that x^4 is not $O(x^3)$.

4) Explain what it means for a function to be $\Omega(1)$

<u>11.2</u>

5) Construct the binary tree with prefix codes representing these coding schemes.

a: 1, e: 001, t: 0001, m: 1101, l: 000011

<u>5.1</u>

Use strong induction to prove that, for every $n \ge 12$, any n=cent postage can be made up using 3-cent stamps and 7-cent stamps.