## 3.1

1) Describe an algorithm for finding both, the largest and the smallest integers in a finite sequence of integers.
3.2
2) Show that $x^{3}$ is $O\left(x^{4}\right)$ but that $x^{4}$ is not $O\left(x^{3}\right)$.
3) Explain what it means for a function to be $\Omega(1)$
11.2
4) Construct the binary tree with prefix codes representing these coding schemes.
a: 1, e: 001, t: 0001, m: 1101, l: 000011

## 5.1

Use strong induction to prove that, for every $n \geq 12$, any $n=$ cent postage can be made up using 3 -cent stamps and 7-cent stamps.

