1. Find the x - and y-intercepts, the domain, the vertical and horizontal asymptotes, and then sketch a complete graph of the function.

$$
f(x)=\frac{x^{3}+2 x^{2}-x-2}{x^{2}+5 x+6}
$$

2. Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ (assume $\mathrm{h} \neq 0$) for:
a) $f(x)=6 x^{2}+2 x-7$
b) $f(x)=-9 x^{2}+3 x+12$
c) $f(x)=5 x^{2}-4 x+20$
3. Solve the inequality and express the solution as an interval.
a) $-x^{2}-4 x \leq-20$
b) $\frac{2 x+3}{x^{2}-4 x+17} \geq 0$
c) $\frac{3}{x-7} \geq \frac{4}{x-8}$
4. Find the domain, asymptotes, and x-intercepts of the function, and then sketch its graph.

$$
\log _{2}(x-3)+\log _{2}(x+3)=4
$$

5. Find the polynomial function $f(x)$ with real coefficient that has $-1,1$, and i as zeros and such that $f(3)=160$. Also, describe the graph of the polynomial form.
6. State the amplitude, period and phase shift, and then sketch are complete cycle of the graph. Label all maxima, minima and x-intercepts.

$$
y=\sin \left(x+\frac{\pi}{6}\right)+2
$$

7. Find all exact solutions in radians.
a) $3 \tan ^{2} x=\tan x$
b) $2 \cos ^{2} x-\cos x=6$
8. In 1923, the population of a state is 5,000 and is growing at a rate of 6% per year.
a) What will the population be in 1960 ?
b) In what year will the population be double?
9. Find the magnitude and the direction angle for:
a) $v=\langle 1,-7\rangle$
b) $v=\langle-6 \sqrt{2}, 3\rangle$
c) $v=\langle-\sqrt{3}, 4\rangle$
10. Use the Binomial Theorem to write the following terms in simplest form.
a) Find the first five terms of the expansion of $\left(3 x-\frac{y}{7}\right)^{16}$
b) Find the 10 th term in the expansion of $\left(6 x-\frac{y}{2}\right)^{12}$
c) Find the expansion of $\left(\frac{x}{4}+y\right)^{5}$
