Name: \qquad

1. For each function:
i) Identify the vertex.
ii) Sketch the graph.
iii) Identify the axis of symmetry.
iv) Identify the maximum or minimum value of the function.
a. $f(x)=x^{2}-3$
b. $f(x)=(x-3)^{2}$
c. $f(x)=-x^{2}-3$

The vertex is \qquad .

The axis of symmetry is \qquad The max/min value is \qquad
_ The axis of symmetry is \qquad The vertex is \qquad . . The max/min value is \qquad . The axis of symmetry is \qquad -.

The vertex is \qquad . _ . The max/min value is \qquad .
e. $f(x)=\frac{1}{2}(x-3)^{2}$
f. $f(x)=2(x-3)^{2}$

The vertex is \qquad .
The axis of symmetry is \qquad
The max/min value is \qquad .
. The axis of symmetry is \qquad _.

The vertex is \qquad .

The max/min value is \qquad _.

The vertex is \qquad .

The axis of symmetry is \qquad -. The max/min value is \qquad .
g. $f(x)=(x+2)^{2}-4$

The vertex is \qquad .
The axis of symmetry is \qquad .

The vertex is

\qquad .

\qquad The max/min value is \qquad . The max/min value is \qquad
. The axis of symmetry is \qquad . .

The vertex is \qquad . The max/min value is \qquad .
j. $f(x)=-(x-1)^{2}+7$

The vertex is \qquad .
The axis of symmetry is \qquad -. The $\mathrm{max} / \mathrm{min}$ value is \qquad .
k. $f(x)=\frac{1}{4}(x-5)^{2}+4$

The vertex is \qquad .
\qquad .

The vertex is \qquad .
The axis of symmetry is \qquad .
The max/min value is \qquad .
2. Find the vertex by using the vertex formula.
a. $h(x)=x^{2}+6 x-7$

The vertex is \qquad .

The axis of symmetry is \qquad .
The max/min value is \qquad .

The x-intercept(s) is, if they exist, \qquad .
The y-intercept is \qquad .

b. $k(x)=2 x^{2}+8 x+9$

The vertex is \qquad .
The axis of symmetry is \qquad .
The max/min value is \qquad .

The x-intercept(s) is, if they exist, \qquad .
The y-intercept is \qquad -

c. $p(x)=-x^{2}+5 x-\frac{25}{4}$

The vertex is \qquad .

The axis of symmetry is \qquad .
The max/min value is \qquad .
\qquad The y-intercept is \qquad .

Although the Egyptians knew how to calculate the areas of building of various shapes, they were unable to calculate the length of sides or walls for the floor plans. Instead of creating or developing a method in which to calculate the wall dimensions, they developed another method of finding the dimensions by creating a lookup table of standard sizes. This table is similar to that of multiplication tables. Engineers would find the most fitting design based on the table developed. Unfortunately due to incoherent reproduction of the tables, there were instances of errors. Hence this method proved inefficient (Hell. 2004).

Reference

