[MODULE 5:COMPLEX NUMBERS]

New York City College of Technology

Name:		Points:
1.	Definition of i : $i = $	
2.	Definition of $\sqrt{-b}$ for $b > 0$ $\sqrt{-b} =$	
3.	Simplify the expressions. a. $\sqrt{-81}$ b. $\sqrt{-75}$ c. $-\sqrt{-49}$	d. $\sqrt{-15}$
4.	Simplify the product or quotient in terms of i	

a. $\frac{\sqrt{-36}}{\sqrt{9}}$ b. $\sqrt{-9} \cdot \sqrt{-49}$ c. $\sqrt{-7} \cdot \sqrt{-7}$

- 5. A **complex number** is a number of the form ______ where *a* and *b* are real numbers.
- 6. The complex number a + bi and ______ are called **conjugates.**

Figure 1

Complex number or imaginary number concept was first investigated by a mathematician and inventor named Heron (c. 10-70 A.D.) from the city of Alexandria on the coast of the Mediterranean, in Egypt. While trying to find the volume of the frustum of a pyramid (see Figure 1) with a square base of a certain size, Heron of Alexandria first encountered the square root of a negative number (Nahin, 1998).

7. Perform the indicated operation.

a.
$$\left(\frac{3}{5} + \frac{2}{3}i\right) + \left(\frac{1}{4} - \frac{1}{3}i\right)$$
 b. $(-5 + 9i) - (-2 + 3i)$

c.
$$4i\left(6-\frac{11}{16}i\right)$$
 d. $(2+3i)(2-3i)$

e.
$$\frac{20i}{-2-i}$$
 f. $\frac{3-4i}{5-3i}$

Reference: Nahin, J. P. (1998). *An imaginary tale: The story of i.* Princeton, NJ: Princeton University Press.