Name: \qquad Points: \qquad

1. Definition of $i: \quad i=$ \qquad
2. Definition of $\sqrt{-b}$ for $b>0$

$$
\sqrt{-b}=
$$

\qquad
3. Simplify the expressions.
a. $\sqrt{-81}$
b. $\sqrt{-75}$
c. $-\sqrt{-49}$
d. $\sqrt{-15}$
4. Simplify the product or quotient in terms of i
a. $\frac{\sqrt{-36}}{\sqrt{9}}$
b. $\sqrt{-9} \cdot \sqrt{-49}$
c. $\sqrt{-7} \cdot \sqrt{-7}$
5. A complex number is a number of the form \qquad where a and b are real numbers.
6. The complex number $a+b i$ and \qquad are called conjugates.

Complex number or imaginary number concept was first investigated by a mathematician and inventor named Heron (c. 10-70 A.D.) from the city of Alexandria on the coast of the Mediterranean, in Egypt. While trying to find the volume of the frustum of a pyramid (see Figure 1) with a square base of a certain size, Heron of Alexandria first encountered the square root of a negative number (Nahin, 1998).
7. Perform the indicated operation.
a. $\left(\frac{3}{5}+\frac{2}{3} i\right)+\left(\frac{1}{4}-\frac{1}{3} i\right)$
b. $(-5+9 i)-(-2+3 i)$
c. $\quad 4 i\left(6-\frac{11}{16} i\right)$
d. $\quad(2+3 i)(2-3 i)$
e. $\frac{20 i}{-2-i}$
f. $\frac{3-4 i}{5-3 i}$

