Name: \qquad

1. Complex Fractions

Simplify.
$1-\frac{x}{w}$
a. $\frac{w}{\frac{x^{2}}{w^{2}}-1}$
LCD $=$ \qquad b. $\frac{\frac{2}{x}-\frac{x}{2}}{\frac{5}{x^{2}}-9} \quad \mathrm{LCD}=$
c. $\quad \frac{2}{a+2}+\frac{6}{a+7}$
$4 a+13$
$\overline{a^{2}+9 a+14}$
$\mathrm{LCD}=$ \qquad
2. Fractional Equations
a. What is the difference between $\frac{2 c}{2 c-1}+\frac{1}{c} \quad$ and $\quad \frac{2 c}{2 c-1}+\frac{1}{c}=\frac{1}{2 c-1}$?

The Babylonians, who lived in the area now known as Iraq , were intensely interested in watching the stars. From these observations, they noticed patterns and deduced that a year - a repetitive pattern with changes in seasons - consisted of 360 days. From this came the idea of fractions, as a year could be divided into days, and days could be multiplied into a year. The use of fractions dates from around 3000 B.C. (Smith, 1958).
b. Solve. $\frac{2 c}{2 c-1}+\frac{1}{c}=\frac{1}{2 c-1}$
c. \quad Solve. $\frac{2 k}{k-3}+\frac{6-2 k}{k^{2}-9}=\frac{k}{k+3}$
$\mathrm{LCD}=$ \qquad $c \neq$ \qquad $\mathrm{LCD}=$ \qquad $k \neq$ \qquad
d. Solve. $\frac{9}{y^{2}+7 y+10}+\frac{3}{y+5}=\frac{5}{y+2}$

LCD= \qquad $y \neq$ \qquad

References:
Smith, D.E. (1958). History of mathematics. Vol. 1. New York, NY:. Dover Publications
Swartzman, S. (1994). The words of mathematics: An etymological dictionary of mathematical terms used in English. USA: The Mathematical Association of America.

