MODULE 5

Name: \qquad Points: \qquad
Exercise 1. Multiply and write your answer as a polynomial in descending degree (that is in the form $\left.a x^{2}+b x+c\right)$.
(a) Multiply $(x-(3+2 i)) \cdot(x-(3-2 i))=$
(b) Multiply $(x-5) \cdot(x-(4+6 i))=$

Note: The above examples confirm again that a polynomial has real coefficients exactly when for each complex root $c=a+b i$ its complex conjugate $\bar{c}=a-b i$ is also a root.

Exercise 2.

(a) Find a polynomial of degree 4 whose roots include $2,-3$, and so that $f(0)=10$.
(b) The following graph is the graph of a polynomial of degree 5 which displays all of the roots of the polynomial. What is a possible formula for the polynomial?

Exercise 3. Let $f(x)=x^{3}-x^{2}-10 x+12$.
(a) Find all roots of the polynomial without approximation. Write your answer in simplest radical form.
(b) Sketch a complete graph of the function f. Include all roots, all maxima, and all minima.

Exercise 4. Factor completely.
(a) $\quad y=x^{4}+2 x^{3}-3 x^{2}-8 x-4$
(b) $\quad y=x^{6}+2 x^{5}+x^{4}+2 x^{3}$

