MODULE 5ROOTS AND GRAPHS
OF POLYNOMIALS

Name:___

Points:_____

Exercise 1. Multiply and write your answer as a polynomial in descending degree (that is in the form $ax^2 + bx + c$).

(a) Multiply $(x - (3 + 2i)) \cdot (x - (3 - 2i)) =$

(b) Multiply
$$(x-5) \cdot (x-(4+6i)) =$$

Note: The above examples confirm again that a polynomial has real coefficients exactly when for each complex root c = a + bi its complex conjugate $\bar{c} = a - bi$ is also a root.

Exercise 2.

(a) Find a polynomial of degree 4 whose roots include 2, -3, and so that f(0) = 10.

(b) The following graph is the graph of a polynomial of degree 5 which displays all of the roots of the polynomial. What is a possible formula for the polynomial?

Exercise 3. Let $f(x) = x^3 - x^2 - 10x + 12$.

(a) Find all roots of the polynomial **without** approximation. Write your answer in simplest radical form.

(b) Sketch a complete graph of the function f. Include all roots, all maxima, and all minima.

Exercise 4. Factor completely. (a) $y = x^4 + 2x^3 - 3x^2 - 8x - 4$

(b)
$$y = x^6 + 2x^5 + x^4 + 2x^3$$