MODULE 4
 INVERSE FUNCTIONS AND LONG DIVISION

Name: \qquad Points: \qquad
Exercise 1. Find the inverse of the given function.
(a) $\quad f(x)=\frac{1}{x-5}+5$
(b) $\quad f(x)=\frac{3 x^{2}-7}{8-5 x^{2}}, \quad$ for $x \geq 0$
(c) $\quad f(x)=x^{2}+3, \quad$ for $x \geq 0$
(d) $\quad f(x)=x^{2}+3, \quad$ for $x \leq 0$

Exercise 2. Check if the functions are inverses of each other. If so, what are the domains and ranges where they are inverses?
(a) $\quad f(x)=\sqrt{x+6}$ and $g(x)=(x-6)^{2}$
(b) $\quad f(x)=|x|$ and $g(x)=x$
(c) $\quad f(x)=|x|$ and $g(x)=-x$

Exercise 3. Divide using long division.
(a) $\quad\left(x^{4}+3 x^{3}-2 x^{2}+9 x+8\right) \div(x+4)=$
(b) $\left(6 x^{3}+5 x^{2}-14 x-10\right) \div(2 x+3)=$

Exercise 4.

(a) Check that 2 is a root of $f(x)=x^{5}-4 x^{3}+7 x-14$ and use this to factor f.
(b) Check that -3 is a root of $f(x)=x^{3}+8 x^{2}+18 x+9$ and use this to factor f.

