MAT1575 Module 5 – Graphing sequences and series using Desmos.

Objectives: Study sequences and series numerically and graphically using Desmos.

- In Desmos we can create a list of numbers using square brackets. For example [1,2,...,10] creates the list of numbers from 1 to 10. You can also make a list that starts at any other number, or that skips several numbers at a time, for example [3,4,...,7] or [2,4,...,12]. The important thing is that you specify a starting value, a "step" value, and an ending value. The ending value can even be a variable if you want to create a list whose length you can change with a slider.
- If you set a list equal to a variable, like N=[1,2,...,10], you can use that list to create new lists. Try the following:

N = [1, 2, ..., 10] $a_N = 1 - 1/N$

This should create a list of the values $1 - \frac{1}{N}$ from N = 1 to N = 10. We can now plot the sequence $a_N = 1 - \frac{1}{N}$ is Desmos using the following notation:

 (N,a_N)

This plots the set of **pairs** where the first entry comes from N and the second entry comes from the matching pair in a_N .

3. To plot the series obtained from a_N, use the following notation

$$\left(N,\sum_{n=1}^N a_N[k]\right)$$

You can get the \sum symbol by typing the word sum into Desmos. Here $a_N[k]$ means the k^{th} term of the list a_N .

- 4. Plot the following sequences and series using Desmos and guess whether or not they converge. If they converge, determine their limit.:
 - (a) $a_n = 3n + 2$
 - (b) $a_n = \frac{n^k}{e^n}$ for k = 2, 3

(c)
$$a_n = \frac{-1}{n+1}$$

(d) $a_n = \frac{n+1}{n+2}$
(e) $a_n = \left(1 + \frac{1}{n}\right)^n$
(f) $\sum_{n=0}^m 3n+2$
(g) $\sum_{n=0}^m \frac{x^n}{e^n}$ for $x = 2,3$
(h) $\sum_{n=0}^m \frac{-1}{n^2+1}$
(i) $\sum_{n=0}^m \frac{n+1}{n+2}$
(j) $\sum_{n=0}^m (-1)^n$