MAT1575 Module 4 – Taylor Polynomials.

Objectives: To compute and graph Taylor polynomial approximations using Desmos.

- 1. Compute $p_5(x)$ at the given *a* value for the following functions.
 - (a) $f(x) = \sin(x)$ at a = 0
 - (b) $f(x) = \frac{1}{1-x}$ at a = 0 (Hint: Think about the geometric series from MAT1375.)
 - (c) $f(x) = \ln(1-x)$ at a = 0 (Hint: Compare the first derivative of this problem to the previous one.)
- 2. Compute $p_2(x)$ for $f(x) = \sqrt{x+3}$ at a = 1.
- 3. Use Desmos to complete the following tasks.
 - (a) Plot $\ln(1-x)$ and $p_5(x)$ at a = 0. (Hint: To plot $p_5(x)$, define f(x) as $\ln(1-x)$ and use f'(x), f''(x), etc to compute its derivatives.)
 - (b) Highlight the set of points (x, y) such that $|\ln(1-x) y| < 0.5$. (Hint: |x y| < 0.5 means that x 0.5 < y and y < x + 0.5.)
 - (c) For what values of x is the approximation $p_5(x)$ of $\ln(1-x)$ within 0.5 of the right answer?
 - (d) Use $p_5(x)$ to estimate the value of $\ln(2)$. (Hint: A smart choice of x and the fact that $-\ln(x) = \ln(\frac{1}{x})$ means that you can get an answer that is within 0.01 of the right value.)