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NONLINEAR EQUATIONS 
➤ So far we have focussed on systems of linear equations. In 

these cases as long as we have as many equations as variables 
we know they can always be solved. 

➤ Nonlinear equations are much more difficult. Often there is 
no way to solve them analytically. Numerical solutions are 
often the only option. 

➤ There are a number of different approaches to solving 
nonlinear equations, the first one we will look at is the 
relaxation method.



RELAXATION METHOD
➤ Let’s consider a single nonlinear equation with a single variable 

that we want to solve. For example,  

➤ there is no known analytic method for solving this equation. The 
relaxation method is to simply iterate over guesses for x until the 
value ‘relaxes’ to a solution. 

➤ So we can start with x=1, plugging that into the right side of the 
equation gives x’=1.632. Then we plug 1.632 into the right side 
of the equation which gives x’’=1.804. 

➤ If we keep on doing this we find that we arrive at a solution 
x=1.84140564533. Plugging this in to the right side and getting 
the same thing out means this is a solution to the equation.

x = 2� e�x



RELAXATION METHOD
➤ The relaxation method is a simple and fast method for solving 

nonlinear equations.  There can be some problems with it.  

1. You have to be able to write the equation as x=f(x). If your 
equation isn’t this way you can try to rearrange it, but if not 
you can’t use this method. 

2. The equation can have more than one solution. You can try 
to find other solutions by changing your initial starting guess. 
This will work best if you have some idea of where you expect 
the solution to be. There are some solutions to some 
equations that you simply won’t find. 

3. Some times the method will give oscillations instead of 
relaxing to one solution.



RELAXATION METHOD
➤ Consider for example the equation  

➤ this also has no known analytic solution, but you can easily 
see act x=1 is a solution. 

➤ If you try relaxation on this equation and start with x=1/2 
you’ll see that x oscillates between 2.7 and 0.0016 and 
doesn’t move towards one solution. 

➤ You can rearrange the equation by taking the log of both sides 
and getting  

➤ now the relaxation method will work and give you x=1.

x = e1�x2

x =
p

1� log x



RELAXATION METHOD
➤ We can understand why sometimes the relaxation method 

works and other times it doesn’t by performing a Taylor 
expansion around a point x near a solution x*. This gives 

➤ since f(x*) = x* if we neglect the higher order terms we get  

➤ this tells us the distance x-x* to the true solution gets 
multiplied by f ’(x*) each iterations. If f ’(x*) < 1 then our 
iteration will converge. If f ’(x*) > 1 then with each step we 
will get farther away.

x0 = f(x) = f(x⇤) + (x� x⇤)f 0(x⇤) + ...

x0 � x⇤ = (x� x⇤)f 0(x⇤)



RELAXATION METHOD
➤ If f ’(x*) > 1 we can try to invert the function to get f-1(x), 

since f ’(x*) > 1 the derivative of f-1(x*) should be less than 
one and the iteration will converge.  

➤ Of course it is not always possible to invert a function, but in 
cases where you can the inverted function should work with 
the relaxation method. 

➤ In summary the relaxation method does not always work. But 
between the cases where it works on the first try, or it works 
on the inverted function, or there is some other way to write 
the function where it will work it is a very useful method for 
solving nonlinear equations.



EXERCISE 6.10
➤ Consider the equation x=1-e-cx, 

where c is a known parameter. 
This equation arises in a variety 
of situations, including the 
physics of contact processes and 
mathematical models of 
epidemics. 

➤ Write a program to solve this 
equation for x using the 
relaxation method for c=2. 

➤ Modify your program to 
calculate the solution for c from 
0 to 3 in steps of 0.1 and make a 
plot of x as a function of c.



RELAXATION METHOD FOR TWO OR MORE VARIABLES
➤ If instead we have equations for two variables 

➤ the relaxation method works just as well as long as each 
equation can be written in a form that gives back the variable. 

➤ This is one of the strengths of the relaxation method, it is 
easily extended to many nonlinear equations of multiple 
variables. 

➤ We’ll see other methods are not so easily extended to 
multiple variables. 

x = f(x, y) y = g(x, y)



BISECTION
➤ Binary search of the bisection method is an alternative and 

more robust method for solving nonlinear equations for a 
single variable x. 

➤ With this method if a solution exists in a specified interval 
the method will always find it. 

➤ You can always rearrange an equation in to the form f(x)=0. 

➤ Thus finding solutions to f(x) is the same as finding the zeros 
or roots of f(x). 

➤ Bisection works by finding roots.
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➤ Suppose we want to find a root of f(x) between x1 and x2. 

➤ We start by evaluating f(x1) and f(x2).  If we discover that one of 
those values is positive and the other negative then so long as f(x) is 
continuous, there must be at least one point (but possibly more) 
between x1 and x2 where f(x)=0.
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➤ Now let’s take a new point half way between x1 and x2, x’ = 1/2(x1 + 
x2) and evaluate f(x’). f(x’) will either be positive or negative (unless it 
is zero in which case we have our root). 

➤ If we now use f(x’) in place of our previous value with the same sign 
and repeat the procedure we will move closer and closer to the solution 
we are searching for.



OUTLINE OF BISECTION

1. Given an initial pair of points, x1,x2, check that f(x1) and f(x2) 
have opposite signs. Choose an accuracy, ε. 

2. Calculate the midpoint x’=1/2(x1 + x2) and f(x’). 

3. If f(x’) has the same sign as f(x1) replace x1=x’. Otherwise 
x2=x’.  

4. If |x1 - x2| > ε repeat from step 2. Otherwise calculate 
1/2(x1+x2) again and that is your answer. 

➤ As with relaxation, bisection improves exponentially. With 
each step you are twice as close to a solution.



BISECTION
➤ Suppose the initial distance between our points is Δ. Then 

with each step the distance goes down by Δ/2N. We end when 
the distance is our desired accuracy. So the number of steps 
needed is 

➤ Log is a very slowly growing function, even if Δ is much larger 
than ε this is not a log of steps. If we start with a Δ=1010 and 
we require an accuracy of ε=10-10, that still only requires 
log2(1020) ~ 66  steps. 

➤ In other words if f(x1) and f(x2) are of different signs you will 
always find a root in a short number of steps.

N = log2
�

✏



BISECTION
➤ Bisection does have a number of shortcomings, most obviously 

if f(x1) and f(x2) have the same sign then you can’t find a root.  
This maybe because there is no root between these values, or 
because there are an even number, or because the function just 
touches zero but doesn’t cross it. 

➤ Thus bisection works best if you know enough about your 
function to know some places where it is positive and negative. 

➤ If you are looking for a root near a particular value of x, start 
with x1 and x2 near that value. If they don’t bracket the root, 
then keep doubling the distance to x1 and x2 till they do 
bracket the root. 

➤ A final problem with bisection is that it only work for single 
equations of one variable.



➤ If you can find local maxima 
and minima for your 
function then these issues 
can be solved.
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NEWTON’S METHOD
➤ The fastest way to find roots of an equation is Newton’s 

method. 

➤ Newton’s method is similar to bisection, except we use the 
functions derivative to estimate where we should make our 
next evaluation instead of the halfway point. 

➤ Using the derivative we should end up with a closer guess, 
though in some cases this doesn’t work. 

➤ Note that if the function was a line then evaluating it at any 
point and using the slope to determine where it crosses zero 
would work exactly.



NEWTON’S METHOD
➤ We can see from the plot 

that  

➤ so our new guess for x’ 
would be  

➤ The only catch with this 
approach is that it requires 
us to be able to evaluate 
f ’(x).
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x0 = x��x = x� f(x)
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ACCURACY OF NEWTON’S METHOD 
➤ As always Taylor expand around the solution x* 

➤ now since x* is a root, f(x*)=0 so we get  

➤ the quantity in square brackets is our estimate x’.  If we define 
our error x*= x+ε and x*= x’+ε’ the above equation tells us 

➤ That is assuming f ’’(x) ~ f ’(x) the error will decrease by ε2 
each step.  That is incredibly fast convergence, what is called 
quadratic convergence.

f(x⇤) = f(x) + (x ⇤ �x)f 0(x) +
1

2
(x ⇤ �x)2f 00(x) + ...

x⇤ =
⇥
x� f(x)

f 0(x)

⇤
� 1

2
(x� x⇤)f

00(x)

f(x)
+ ...

✏0 =
�f 00(x)

2f 0(x)
✏2



ACCURACY OF NEWTON’S METHOD
➤ The convergence is so fast that we can 

assume the error on the last iteration 
is negligible compared to the previous 
one and thus know our total error is 
less that difference of the two. 

➤ Newton’s method has two main 
issues. We need to be able calculate 
derivatives and more importantly 
Newton’s method doesn’t always 
converge.  If f ’(x) is very small then 
the error can get larger with each 
iteration, and if the function slopes the 
wrong way then we can get farther 
away instead of closer to the root.

x’

root

x

➤ If Newton’s method behaves 
strangely it may be because of 
one of these issues. 



EXERCISE 6.15

➤ There is no general formula for the roots of a 
sixth-order polynomial, but one can find them 
easily enough using a computer.  Make a plot 
of P(x) from x=0 to x=1 and by inspecting it 
find rough values for the six roots of the 
polynomial - the points at which the function 
is zero. 

➤ Write a Python program to solve for the 
positions of all six roots to at least ten decimal 
places of accuracy, using Newton's method. 

➤ Note that the polynomial in this example is 
just the sixth Legendre polynomial (mapped 
onto the interval from zero to one), so the 
calculation performed here is the same as 
finding the integration points for 6-point 
Gaussian quadrature (see Section~5.6.2), and 
indeed Newton's method is the method of 
choice for calculating Gaussian quadrature 
points.

P (x) = 924x6 � 2772x5 + 3150x4

�1680x3 + 420x2 � 42x+ 1

x0 = x��x = x� f(x)

f 0(x)



SECANT METHOD
➤ As mentioned earlier one of the problems with Newton’s method is 

that we have to be able to calculate the derivative. 

➤  If we have an analytic expression for the function that is 
straightforward, but if the values come from an experiment or a 
numerical calculation we won’t have an analytic expression. 

➤ In that case we can always take a numerical derivative. In fact to be 
efficient we can just use two of our guesses for the root and take an 
numerical derivative between them. 

➤ This is called the secant method we approximate the derivative as 

➤ so the next point is given by 

f 0(x) =
f(x2)� f(x1)

x2 � x1

x3 = x2 � f(x2)
x2 � x1

f(x2)� f(x1)



NEWTON’S METHOD FOR TWO OR MORE VARIABLES 
➤ Newton’s method can also be used to solve systems of nonlinear 

equations. If we have N equations with N variables 

➤ Let’s do our Taylor expansion, but let’s write x=x1,…,xn to give 

➤ where ∇f is a N×N matrix whose elements are ∂fi/∂xj. Since x* is a root 
of the equation f(x*)=0 and we have  

➤ but this is just a set of linear equation like Ax=v which we can solve by 
Gaussian elimination. Once we solve for Δx we get our new guess x’=x-
Δx and we just keep iterating to we are happy with our x’.

f1(x1, ..., xn) = 0

...

fN (x1, ..., xn) = 0

f(x⇤) = f(x) +rf · (x⇤ � x)

rf ·�x = f(x)



MAXIMA AND MINIMA 
➤ Closely related to the problem 

of finding roots is the problem 
of finding maxima and minima 
of a function. 

➤ Functions can have local and 
global minima.  

➤ If we have a function f(x1,x2,…) 
and we takes its derivatives 
then solving ∂f/∂xi=0 for all i 
will give us the maxima and 
minima.

minimumminima
Local Global

➤ Of course this is exactly 
what we have been doing, 
so we could use any of the 
methods so far discussed.



GOLDEN RATIO SEARCH
➤ A method to find a minima without 

derivatives is the golden ratio search 
which is similar to bisection, but we 
use four unevenly spaced points. 

➤ Suppose at least one of f(x2) or f(x3) 
is less than f(x1) and f(x4). Then we 
know there must be a minimum 
between x1 and x4. 

➤ If f(x2) is less than f(x3) we know 
the minimum lies between x1 and x3. 

➤ We can now choose a new point 
between them and narrow our range 
for minimum is even more.

x 1 x 2

f (x )

x 3 x 4



GOLDEN RATIO SEARCH
➤ How should we choose where to put our points? 

➤ x2 and x3 should be symmetric around the center of x1 and x4 
since we don’t know on which side of the minimum it will 
land. 

➤ In order to make the method of as efficient as possible we 
want the range in which the minimum is located to decrease 
as quickly as possible. If we choose x2 and x3 close to the 
center then it makes this step efficient, but the next step less 
efficient.  Let us define z as the ratio between the intervals in 
two steps.

z =
x4 � x1

x3 � x1
=

x2 � x1

x3 � x1
+ 1



GOLDEN RATIO SEARCH

➤ For the next step the ratio will be  

➤ setting these two equal we find  

➤ whose solution that is greater than 1 is  

➤ this value is called the golden ratio and it pops up repeatedly 
in physics and mathematics as well as art and architecture. 

➤ so we find that the interior points should be 1/z or 0.618 of 
the way between the exterior points. 

➤ So the golden ratio search algorithm is the following

z =
x3 � x1

x2 � x1

z2 � z � 1 = 0

z =
1 +

p
5

2
= 1.618...



GOLDEN RATIO SEARCH ALGORITHM

1. Choose two initial outside points x1 and x4, then calculate two 
interior points using the golden ratio. Evaluate f(x) at all the 
points. Choose an ε. 

2. If f(x2) < f(x3) then the minimum lies between x1 and x3.  In 
this case x3 becomes the new x4, x2 becomes the new x3 and 
there is a new x2 chosen by the golden ratio. Evaluate new f(x). 

3. If f(x2) > f(x3) then the minimum lies between x2 and x4, x2 
becomes the new x1, x3 becomes the new x2 and new value for 
x3. Evaluate new f(x). 

4.If x4 - x1 > ε, repeat from step 2. Otherwise 1/2(x2 + x3) is 
your solution.  



GAUSS-NEWTON METHOD
➤ The golden ratio method suffers from the same issues as 

bisection. You have to bracket the maximum/minimum to 
find it and it only work for single variables.  

➤ An alternative approach is to used f ’(x)=0 and look for its  
roots. If we use Newton’s method to find the roots then we 
have  

➤ which is the fundamental formula for the Gauss-Newton 
method. This can be generalized for systems of nonlinear 
equations with many variables. 

x0 = x� f 0(x)

f 00(x)



GRADIENT DESCENT 
➤ However, it is often the case that it will not be possible to 

evaluate the second derivative of our function.  It turns out 
that just using a constant γ as a rough guess of 1/f ’’(x) works 
in practice very well. This is called gradient descent, where we 
advance based only on the first derivative  

➤ this method depends on a good guess for γ, if it is too small 
then you will converge very slowly. If it is too big you will 
overshoot the solution. In cases where you can’t evaluate the 
first derivative you can use a numerical approximation,

x0 = x� �f 0(x)

x3 = x2 � �
f(x2)� f(x1)

x2 � x1



TERMINOLOGY
➤ Relaxation Method - A method for solving equations that can be written as x = 

f(x), where the x returned is then used as a new trial value. 

➤ Bisection - A method for finding roots taking the midpoint between two values 
and evaluating if f(x) is positive or negative. 

➤ Newton’s Method - A method of finding roots using the functions derivative to 
estimate the next guess. 

➤ Secant Method -  Same as Newton’s Method but using numerical derivatives. 

➤ Golden Ratio Search - A method to find extrema where one uses the golden 
ratio to choose two points in the range and then narrows the range from them. 

➤ Gauss - Newton Method - A method to find extrema by taking the derivative of 
a function and then taking second derivatives to estimate the next guess. 

➤ Gradient Descent - Similar to Gauss - Newton but instead of taking second 
derivatives of the function one just uses a constant value. 


