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INTERPOLATION
➤ Interpolation is the approximation of the value of a function 

for points in between the value that we do know. 

➤ Interpolation and fitting a function sound very similar; 
however, they are trying to achieve different things. 

➤ Interpolation seeks to fill in the information in some small 
region of a dataset. 

➤ Fitting a function attempts to find a model that fits our data 
to give us some better understanding of the nature of the 
data.



LINEAR INTERPOLATION
➤ The simplest form of interpolation is linear. Take the two 

points closest to where you want to interpolate, fit a line to 
them and then from the equation for that line you have the 
value of your previously unknown point. 

➤ Note that your point doesn’t need to lie between the two 
points, though the farther away it is the worst your 
interpolation is likely to be. 

➤ It can be shown that the error in your interpolation Δf(x) goes 
like  

➤ So the error in the interpolation goes like O(Δx2).
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➤ The interpolated value will have some error from the correct 
value. 

➤ The closer x is to a and b the better the interpolation will be.
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QUADRATIC INTERPOLATION
➤ Next we can fit a quadratic to three points and use that for 

the interpolation. 

➤ One thing that happens with a quadratic is that our 
interpolated value can be outside the range of the points we 
use to generate it. f(x) can be larger or smaller than f(xk-1), 
f(xk), f(xk+1). 

➤ This overshooting or undershooting can cause problems if it 
gives nonphysical answers. That is if the values should only 
lie in some range. 

➤ This is one problem with higher order interpolation.



LAGRANGE INTERPOLATION 
➤ We can use Lagrange interpolation like we saw when 

discussing Gaussian quadrature. That is using the 
interpolating polynomial.  

➤ This function is guaranteed to go through all the points that 
we use for the fit. 

➤ However, in between the points this function could be much 
higher or lower. Just because it correctly fits the points we 
have does not mean it correctly matches the values between 
those points.
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RUNGE PHENOMENA 
➤ You’ll notice that at some moment as the number of points 

increases the error actually increases.  

➤ This is an example of the Runge phenomena: 

➤ Oscillation becomes large at the end of the interval with 
polynomial interpolation. 

➤ One can do better with variable spacing. The problem is that 
you have very little information at the end points to constrain 
the fit. Thus high order polynomials will tend to trade wild 
oscillation at the end points for better fits to the middle points. 

➤ The problem can be thought of as fitting the location of the 
points but not their derivatives.



SPLINES
➤ Another way to do interpolation is to match the derivatives of 

the function at the end points. This is called a spline. 

➤ The most common one used is a cubic spline that matches the 
first and second derivative at each data point. 

➤ This results in a smooth appearance and avoids the severe 
oscillations of higher order polynomials. 

➤ The goal here is not to fit a large number of points, but to 
combine a number of different fits so that they pass though 
the points and there derivatives match where they connect. 

➤ Does not provide a functional fit to the entire dataset.



EXAMPLE OF A CUBIC SPLINE

➤ cubic - m=3 

➤ Intervals (# of cubics) - n=3 

➤ We need (m+1)n = 12 
constraints. 

➤ Interior points 1 and 2: 

➤ Lets look at a 3 interval / 4 point fit with 3 cubic splines.

At x1: 

p0(x1) = f1 

p1(x1) = f2 

p’0(x1) = p’1(x1) 

p’’0(x1) = p’’1(x1)

At x2: 

p1(x2) = f2 

p2(x2) = f2 

p’1(x2) = p’2(x2) 

p’’1(x2) = p’’2(x2)



EXAMPLE OF A CUBIC SPLINE

➤ cubic - m=3 

➤ Intervals (# of cubics) - n=3 

➤ We need (m+1)n = 12 
constraints. 

➤ Boundary points 0 and 3: 

➤ Still need two constraints, we’ll 
choose the second derivatives to 
be zero at the boundary 

➤

➤ Lets look at a 3 interval / 4 point fit with 3 cubic splines.

p0(xo) = fo 

p2(x3) = f3

p’’0(xo) =0 

p’’2(x3) = 0



CUBIC SPLINES
➤ After a lot of algebra we can get the following equation for the 

splines: 

➤ while this looks pretty bad it is a linear equation and can be 
solved with standard linear algebra techniques that we will 
discuss next section. 

➤ Note: cubic splines are not necessarily the most accurate 
interpolation scheme (other methods may give smaller values 
of Δf(x)). 

➤ But for plotting and graphics applications they look right!
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NUMPY.INTERP AND SCIPY.INTERPOLATE 
➤ One can perform linear interpolation using numpy.interp(x, 

xp, yp), where x are the points you want to interpolate at and 
xp, yp are the x and y values that you know.  

➤ Alternatively the scipy interpolate sub-package has many 
functions to call for interpolation. The function interpld() can 
create an instance of your interpolator and then be used on a 
point. There are many choices of how to interpolate.  f = 
interpld(x, y, kind=‘cubic’) and then f(xnew) returns your ynew 
values using cubic interpolation. 

➤ There are also function for interpolating in higher dimension 
and performing spline interpolation.



TERMINOLOGY 
➤ Interpolation - approximation for the value of a function using 

values at known points. 

➤ Lagrange interpolation - a method of interpolation using the 
interpolating polynomial which goes exactly through all 
known points. 

➤ Interpolating polynomial - a way of generating a polynomial 
that goes through a set of given points.  

➤ Spline - a series of functions that go through points but also 
match their derivatives when they meet. 


