
DIFFERENTIAION
Ari Maller

DERIVATIVES
➤ Derivatives are as important in physics as integrals, but you

will hear much less about numerical derivatives than integrals
for a number of reasons.

➤ The basic technique for numerical differentiation is quite
simple.

➤ Derivatives of known functions can always be calculated
analytically, so there is less need to use numerical methods.

➤ There are some significant practical problems with
numerical derivatives, so they are used less often, that is
avoided if possible.

FORWARD AND BACKWARD DIFFERENCES
➤ The basic method for calculating derivatives is the

straightforward approximation of the standard derivative
formula.

➤ This is called the forward difference since x+h is greater than x.
Alternatively we can evaluate the backward difference

➤ Either formula should give one the same result, though
sometimes one is preferred like if there is a discontinuity at x.

df

dx
=

f(x+ h)� f(x)

h

df

dx
=

f(x)� f(x� h)

h

ERRORS
➤ In order to decide how to choose h we will need to

understand the errors in our evaluation.

➤ For derivatives rounding error and approximation error are
likely to both contribute to our error. To determine the
approximation error let us Taylor expand around f(x+h)

➤ To leading order the error on the forward difference is 1/2h|
f’’(x)|, because we divide everything by h to define a
derivative. There is also a rounding error that is much more
important than in an integral because we are performing
subtraction. The rounding error should be 2C|f(x)|/h.

f(x+ h) = f(x) + hf
0(x) +

1

2
h
2
f
00(x) +O(h3)

ERROR
➤ So the total error will be

➤ If we try to minimize this equation by taking the derivative
with respect to h and setting the derivative to zero we get

➤ so if f(x) and f ’’(x) are of order unity then we should take
h~10-8 in Python and the error in our derivative would also
be about 10-8. This is much worse then we typically were able
to do with integration where we could get to machine
precision in a reasonable number of steps.

✏ =
2C|f(x)|

h
+

1

2
hf 00(x)

�2C|f(x)|
h2

+
1

2
|f 00(x)| = 0 => h =

s

4C
�� f(x)
f 00(x)

��

ERROR

CENTRAL DIFFERENCES
➤ One way to improve the accuracy of our derivative is to combine

the forward and backward differences into a central difference

➤ Taylor expanding around these two points will give alternating
signs for odd terms cancelling them out. So our error will
become

➤ So now for Python h should be 10-5 and the error will be 10-10, a
hundred fold improvement from the forward or backward
differences. Notice h actually gets bigger while the error gets
smaller.

df

dx
=

f(x+ h/2)� f(x� h/2)

h

✏ =
2C|f(x)|

h
+

1

24
h2|f 000(x)| => h =

�
24C

�� f(x)

f 000(x)

���1/3

SAMPLED FUNCTIONS
➤ If we have sampled data spaced h apart like from an

experiment then the central difference at a point would need to
be calculated x+h and x-h apart instead of x+h/2 and x-h/2.

➤ However, we could achieve better accuracy if instead we
calculated the derivative for points in between our sampled
points.

➤ Thus in situations where we know f(x) for certain points xk, it
is better to evaluate the derivative for points in-between xk and
not at xk.

EXERCISE 5.15
➤ Create a user-defined function f(x)

that returns the value 1 +
1/2tanh(2x).

➤ Then use a central difference to
calculate the derivative of the
function in the range [-2,2].

➤ The derivative of this function is
sech2(2x). Make a graph with your
numerical result and the analytic
answer on the same plot. It may
help to plot the exact answer as
lines and the numerical one as dots.

➤ (Hint: In Python the tanh function
is found in the math package, and
it's called simply tanh.)

df

dx
=

f(x+ h/2)� f(x� h/2)

h

HIGHER ORDER DERIVATIVES

➤ The forward and backward difference are basically a linear fit
to two points and then taking the slope of that as the
derivative.

➤ Like in the case of integrals, can we try higher order fits?

➤ If we try a quadratic fit we will get central difference.

➤ A fourth order fit would be

➤ Just like for integrals at higher order you use more points and
they are weighed differently.

f 0(x) ' �f(x+ 2h) + 8f(x+ h)� 8f(x� h) + f(x� 2h)

12h

2ND DERIVATES
➤ We can just as easily compute 2nd derivates by simply

recognizing that if g(x) = f ’(x), then f ’’(x) = g’(x). If we
used the central difference for both calculations we would get

➤ The error on the second derivative goes as

➤ In this case we see that we want h~10-8 and the error will be
~10-8, the same as for using forward or backward difference.

➤ So taking a second derivative has basically reduced our
accuracy the same as using a method of one lower order.

f 00(x) =
f(x+ h)� 2f(x) + f(x� h)

h2

✏ =
4C|f(x)|

h2
+

1

12
h2|f 000(x)|

PARTIAL DERIVATIVES
➤ We can determine partial derivatives just as easily using the

central difference method or any other method. We simply
hold all variables fixed except the one that we are taking the
derivative off.

@f

@x
=

f(x+ h/2, y)� f(x� h/2, y)

h

@f

@y
=

f(x, y + h/2)� f(x, y � h/2)

h

@2f

@x@y
=

f(x+ h/2, y + h/2)� f(x� h/s, y + h/2)� f(x+ h/2, y � h/2) + f(x� h/2, y � h/2)

h

0 200 400 600 800 1000

-1

0

1 NOISY DATA
➤ One tricky thing with

derivatives can be if you have
noisy data.

➤ Taking the points as is the
curve to the left will produce
derivatives with large variance.

➤ If we think the variation is real
then that is what we want. But
if we think the variation is just
noise and we want the
derivative of some underlying
function, then we don’t want
the simple derivative of the
recorded values.

0 200 400 600 800 1000

-0.2

-0.1

0

0.1

0.2 NOISY DATA
➤ The derivative taken just with

the measured points is this
plot.

➤ If we know this is due to noise
there are a few things we can
do.

➤ The easiest is to just make
h larger. We can treat the
noise like rounding error
and find a value for h that
minimizes the contribution
of the noise.

0 10 20 30 40 50
-0.2

-0.1

0

0.1

0.2

0.3
NOISY DATA
➤ A second option is to fit a

curve to the portion of the
data where we wish to take
the derivative. This is not a fit
to just a few points like a
higher order derivative, but fit
to scales large enough to see
the underlying function and
not the noise.

➤ A third option is to smooth
the data before taking the
derivative. This could be done
with a Fourier transform for
example.

NUMPY.GRADIENT AND SCIPY.MISC.DERIVATIVE
➤ The function derivative() can be found in scipy.misc and will

calculate the nth derivative of a given function using central
difference.

➤ The call is derivative(func, x0, dx=0.1, n=1)

➤ Alternatively one can use numpy’s gradient() function to
calculate derivates from an array of values.

➤ The call is gradient(y,axis=0). If no axis is given then the
derivatives are calculated along all axes, which give you
gradients.

TERMINOLOGY
➤ Forward or Backward difference - a numerical derivative

where the difference is taken as f(x+h) - f(x) or f(x) - f(x-h).

➤ Central difference - a numerical derivative where the
difference is taken between f(x+h/2) - f(x-h/2).

