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DERIVATIVES 
➤ Derivatives are as important in physics as integrals, but you 

will hear much less about numerical derivatives than integrals 
for a number of reasons. 

➤ The basic technique for numerical differentiation is quite 
simple. 

➤ Derivatives of known functions can always be calculated 
analytically, so there is less need to use numerical methods. 

➤ There are some significant practical problems with 
numerical derivatives, so they are used less often, that is 
avoided if possible.



FORWARD AND BACKWARD DIFFERENCES
➤ The basic method for calculating derivatives is the 

straightforward approximation of the standard derivative 
formula. 

➤ This is called the forward difference since x+h is greater than x.  
Alternatively we can evaluate the backward difference 

➤ Either formula should give one the same result, though 
sometimes one is preferred like if there is a discontinuity at x.
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ERRORS
➤ In order to decide how to choose h we will need to 

understand the errors in our evaluation. 

➤ For derivatives rounding error and approximation error are 
likely to both contribute to our error. To determine the 
approximation error let us Taylor expand around f(x+h) 

➤ To leading order the error on the forward difference is 1/2h|
f’’(x)|, because we divide everything by h to define a 
derivative. There is also a rounding error that is much more 
important than in an integral because we are performing 
subtraction. The rounding error should be 2C|f(x)|/h. 
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ERROR
➤ So the total error will be  

➤ If we try to minimize this equation by taking the derivative 
with respect to h and setting the derivative to zero we get  

➤ so if f(x) and f ’’(x) are of order unity then we should take 
h~10-8 in Python and the error in our derivative would also 
be about 10-8.  This is much worse then we typically were able 
to do with integration where we could get to machine 
precision in a reasonable number of steps.
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CENTRAL DIFFERENCES 
➤ One way to improve the accuracy of our derivative is to combine 

the forward and backward differences into a central difference  

➤ Taylor expanding around these two points will give alternating 
signs for odd terms cancelling them out. So our error will 
become 

➤ So now for Python h should be 10-5 and the error will be 10-10, a 
hundred fold improvement from the forward or backward 
differences. Notice h actually gets bigger while the error gets 
smaller.
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SAMPLED FUNCTIONS
➤ If we have sampled data spaced h apart like from an 

experiment then the central difference at a point would need to 
be calculated x+h and x-h apart instead of x+h/2 and x-h/2. 

➤ However, we could achieve better accuracy if instead we 
calculated the derivative for points in between our sampled 
points. 

➤ Thus in situations where we know f(x) for certain points xk, it 
is better to evaluate the derivative for points in-between xk and 
not at xk.



EXERCISE 5.15
➤ Create a user-defined function f(x) 

that returns the value 1 + 
1/2tanh(2x). 

➤ Then use a central difference to 
calculate the derivative of the 
function in the range [-2,2].   

➤ The derivative of this function is 
sech2(2x). Make a graph with your 
numerical result and the analytic 
answer on the same plot.  It may 
help to plot the exact answer as 
lines and the numerical one as dots.   

➤ (Hint: In Python the tanh function 
is found in the math package, and 
it's called simply tanh.)
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HIGHER ORDER DERIVATIVES

➤ The forward and backward difference are basically a linear fit 
to two points and then taking the slope of that as the 
derivative. 

➤ Like in the case of integrals, can we try higher order fits? 

➤ If we try a quadratic fit we will get central difference.  

➤ A fourth order fit would be 

➤ Just like for integrals at higher order you use more points and 
they are weighed differently.
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2ND DERIVATES
➤ We can just as easily compute 2nd derivates by simply 

recognizing that if g(x) = f ’(x), then  f ’’(x) = g’(x).  If we 
used the central difference for both calculations we would get  

➤ The error on the second derivative goes as  

➤ In this case we see that we want h~10-8 and the error will be 
~10-8, the same as for using forward or backward difference. 

➤ So taking a second derivative has basically reduced our 
accuracy the same as using a method of one lower order.
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PARTIAL DERIVATIVES 
➤ We can determine partial derivatives just as easily using the 

central difference method or any other method. We simply 
hold all variables fixed except the one that we are taking the 
derivative off.
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➤ One tricky thing with 

derivatives can be if you have 
noisy data.   

➤ Taking the points as is the 
curve to the left will produce 
derivatives with large variance. 

➤ If we think the variation is real 
then that is what we want. But 
if we think the variation is just 
noise and we want the 
derivative of some underlying 
function, then we don’t want 
the simple derivative of the 
recorded values.
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➤ The derivative taken just with 

the measured points is this 
plot.   

➤ If we know this is due to noise 
there are a few things we can 
do. 

➤ The easiest is to just make 
h larger. We can treat the 
noise like rounding error 
and find a value for h that 
minimizes the contribution 
of the noise.
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➤ A second option is to fit a 

curve to the portion of the 
data where we wish to take 
the derivative.  This is not a fit 
to just a few points like a 
higher order derivative, but fit 
to scales large enough to see 
the underlying function and 
not the noise. 

➤ A third option is to smooth 
the data before taking the 
derivative. This could be done 
with a Fourier transform for 
example.



NUMPY.GRADIENT AND SCIPY.MISC.DERIVATIVE 
➤ The function derivative() can be found in scipy.misc and will 

calculate the nth derivative of a given function using central 
difference.  

➤ The call is derivative(func, x0, dx=0.1, n=1)  

➤ Alternatively one can use numpy’s gradient() function to 
calculate derivates from an array of values.   

➤ The call is gradient(y,axis=0). If no axis is given then the 
derivatives are calculated along all axes, which give you 
gradients.



TERMINOLOGY
➤ Forward or Backward difference - a numerical derivative 

where the difference is taken as f(x+h) - f(x) or f(x) - f(x-h). 

➤ Central difference - a numerical derivative where the 
difference is taken between f(x+h/2) - f(x-h/2).


