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RANDOM NUMBERS
➤ Sometimes in physics we need to make use of random 

numbers. To do so on the computer we use a random number 
generator. 

➤ It should be stressed, the computer has no means of making 
random numbers. To be fair, it isn’t entirely clear if I say pick 
a number between 1 and 100 whether or not we can pick 
random numbers either. 

➤ Instead the computer can create pseudorandom numbers, 
number that appear random but are generated by a completely 
deterministic formula.  



RANDOM NUMBER GENERATORS
➤ Consider the following equation 

➤ where a, c and m are integer constants and x is an integer 
variable.  Given a value of x the equation returns a value for 
x’. Now lets take that value of x’ and plug it back into the 
equation.  

➤ If we set a=1664525, c=1013904223 and m=4294967296 
and generate values of x’ say 100 times, then the resulting 
integers look pretty random.

x0 = (ax+ c) mod m



The follows generated from that equation. They look pretty random.



RANDOM NUMBER GENERATORS
➤ This is called a linear congruential random number generator. It is 

probably the most famous of random number generators. 

➤ It is obviously not random, since each value of x’ following 
deterministically from the previous value of x. If you run the 
program twice it will produce identical results. 

➤ This produces values in the range 0 to m-1. If we want a different 
range, say 0 to 1 we can divide by m. Note this produces numbers 
greater than or equal to 0, but always less than 1. 

➤ While the value of a, c and m seem random, they have been chosen 
with great care. Other choices can produce less random numbers. 
For example, if c and m are both even, then the process would 
generate only even or odd numbers depending on the initial x.



RANDOM SEED
➤ The original number x used to start the process is called the 

random seed.   

➤ It is important because with it you can produce the same string 
of random numbers, even on a different computer, if you have 
the same values of a, c and m.  

➤ This is very useful for debugging. If you have an error that 
occurs sometimes, but not always with a random number 
generator, you’d like to be able to produce the same sequence 
of numbers in order to debug it.  

➤ But if you forget to change the seed, then your random number 
generator will always produce the same sequence of numbers. 
That is not behave very randomly. 



RANDOM NUMBER GENERATORS
➤ Unfortunately the random numbers created by the linear 

congruential random number generator are not random 
enough for many uses in physics.  

➤ The flaws usually tend to be the sequence of the random 
numbers is not random enough. That is the ordering the 
random numbers occur tends to have nonrandom patterns 
that can introduce correlations in one’s analysis. 

➤ Luckily many other random number generators exist. In 
physics these days the algorithm of choice tends to be the 
Mersenne twister, which is a ‘generalized feedback shift-register 
generator’.



RANDOM PACKAGE
➤ In Python one can access this algorithm from the random package 

numpy.random.  In order to start generating random numbers one wants 
to create an instance of a random number generator 

rng = default_rng(seed=1234) #creates an instance of the generator 

rng.random(size=2)          #Returns 2 random float f, where 0 <= f < 1 

rng.integers(low=0,high=10,size=5)  #Returns 5 integers between 0 and 
10 

rng.choice(a)         #returns a random choice from the array a 

➤ The package also contains functions that return numbers from 
distributions other than the uniform distribution.  

➤ The same seed will give the same pseudorandom order of numbers. 

➤ There are many more methods for the generator, see here 

https://numpy.org/doc/stable/reference/random/generator.html#random-generator

https://numpy.org/doc/stable/reference/random/generator.html#random-generator


RANDOM NUMBERS AND CRYPTOGRAPHY
➤ Psuedorandom numbers play an important role in daily life 

through there use in cryptography.  

➤ Imagine one of the simplest types of codes a substation cipher. In 
this code one converts all the letters to numbers and then adds 
a constant to each letter. Converting back to letters one has an 
unreadable message. 

➤ However, if you know the constant added then you can simply 
subtract that number from each letter and unveil the original 
message.  

➤ Such a cipher is also very easy to break. Just subtract everyone 
possible number between 1 and 26 from the message and one 
of them will be the correct unencrypted message. 



RANDOM NUMBERS AND CRYPTOGRAPHY
➤ A much more secure cipher is to add a different number to each 

letter. One can choose the numbers to be added randomly, in 
this case trying to undo the cipher amounts to randomly 
changing each letter, which will just generate random messages. 

➤ The most secure way to implement this cipher is with a one time 
pad. That is a list of random numbers that are used by the 
encoder and decoder only once. While very secure this is 
difficult to implement. 

➤ More practical is to use a pseudorandom number generator. 
Then if the only the seed (called the key) is shared the message 
can be encoded and decoded. And this is what is essentially 
done for all modern cryptography.  



PROBABILITY 
➤ So now that we know how to generate pseudorandom 

numbers, what do we do with them? 

➤ One use is to generate events based on the probability that 
such an event would occur.  For example, video poker games 
generate a poker hand as if the cards were randomly chosen 
from a deck. This is done with a random number generator. 

➤ Similarly many games have random elements, in all those cases 
the random events are chosen by probability and a random 
number generator.  

➤ In physics too, if we know something has some probability of 
occurring, then we create a realization of it using random 
numbers.



EXAMPLE 10.1 DECAY OF AN ISOTOPE
➤ The radioisotope 208Tl decays to stable 208Pb with a half life of 

3.053 minutes. Suppose we start with a sample of 1000 
thallium atoms. Let us simulate the decay of these atoms over 
time, mimicking the randomness of that decay using random 
numbers. 

➤ On average we know that the number N of atoms in our 
sample will fall off exponentially over time according to the 
standard equation of radioactive decay: 

➤ where τ is the half-life. Then the fraction of atoms remaining 
after time t is N(t)/N(0)=2-t/τ and the fraction that have 
decayed also equal to the probability of a single atom decaying 
is

N(t) = N(0)2�t/⌧

p(t) = 1� 2�t/⌧



EXAMPLE CODE (DECAY.PY)
from random import random 

from numpy import arange 

from pylab import plot,xlabel,ylabel,show 

# Constants 

NTl = 1000            # Number of thallium atoms 

NPb = 0               # Number of lead atoms 

tau = 3.053*60        # Half life of thallium in seconds 

h = 1.0               # Size of time-step in seconds 

p = 1 - 2**(-h/tau)   # Probability of decay in one step 

tmax = 1000           # Total time 

# Lists of plot points 

tpoints = arange(0.0,tmax,h) 

Tlpoints = [] 

Pbpoints = [] 



EXAMPLE CODE (DECAY.PY)
# Main loop 

for t in tpoints: 

    Tlpoints.append(NTl) 

    Pbpoints.append(NPb) 

    # Calculate the number of atoms that decay 

    decay = 0 

    for i in range(NTl): 

        if random()<p: 

            decay += 1 

    NTl -= decay 

    NPb += decay 

# Make the graph 

plot(tpoints,Tlpoints) 

plot(tpoints,Pbpoints) 

xlabel("Time") 

ylabel("Number of atoms") 

show() 



NUMERICAL EXPERIMENTS
➤ Notice that the plot we made is not the average decay rate of 

the isotope. We could simply plot that since we have N(t). But 
the two are different. 

➤ The plot is a random realization of a possible decay path for the 
isotope.  Running the code a second time will give different 
results (since we did not set a seed).  

➤ In some ways using random numbers can be thought of as a 
numerical experiment. Just like an experimental set up, it is 
one realization of the possible outcomes.  

➤ Just like running many experiments will have variations around 
the mean value, each numerical experiment will also show 
variations.  This can be an advantage as we will discuss later.
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EXERCISE 10.2
➤ The isotope 213Bi decays to stable 209Bi via one of two different 

routes, with probabilities and half-lives as seen in the figure. 

➤ Starting with a sample consisting of 10,000 atoms of 213Bi, 
simulate the decay of the atoms as in Example 10.1 by dividing 
time into slices of length  δt=1s each and on each step doing the 
following: 

1. For each atom of 209Pb in turn, decide at random, with the 
appropriate probability, whether it decays or not.  Count the total 
number that decay,  subtract it from the number of 209Pb atoms, 
and add it to the number of 209Bi atoms. 

2. Now do the same for 209Tl, except that decaying atoms are 
subtracted from the total for 209Tl and added to the total for 
209Pb. 

3. For 213Bi the situation is more complicated: when a 213Bi atom 
decays you have to decide at random with the appropriate 
probability the route by which it decays.  Count the numbers that 
decay by each route and add and subtract accordingly. 

➤ Note that you have to work up the chain from the bottom like 
this, not down from the top, to avoid inadvertently making the 
same atom decay twice on a single step. Keep track of the number 
of atoms of each of the four isotopes at all times for 20,000 
seconds and make a single graph showing the four numbers as a 
function of time on the same axes.p(t) = 1� 2�t/⌧



NONUNIFORM RANDOM NUMBERS
➤ The random number generators we have discussed return 

uniform probability integers in a range or floats in the range 
of zero up to one. But many probability distributions aren’t 
uniform. 

➤ Consider the radioactive decay we just discussed. The 
probability of a decay in a small interval dt is  

➤ Now we can ask what is the probability that a particular atom 
survives until time t and then decays between t and t+dt. 

1� 2�dt/⌧ = 1� exp
�dt
⌧

ln 2
�
=

ln 2

⌧
dt

P (t)dt = 2�t/⌧ ln 2

⌧
dt



NONUNIFORM RANDOM NUMBERS
➤ This is an example of a nonuniform probability distribution. 

The chance of decay is not uniform but decreases 
exponentially with time. 

➤ In the example we just did we calculated the probability of an 
isotope decaying every time step.  However, it would be much 
more efficient to just calculate a time at which each atom 
decays. But to do so we need to sample from this nonuniform 
probability distribution. 

➤ Fortunately it turns out this is not too hard to do. There are a 
number of methods, the most common is the transformation 
method.



TRANSFORMATION METHOD
➤ Suppose you have a probability density q(z) and supposed you  

have a function x(z). If z is a random number than x(z) is also 
a random number, but in general it doesn’t have the 
distribution q(z) it has a distribution p(x). Our goal is to 
choose x(z) so it has the distribution we want. 

➤ The probability of generating a value of x between x and x+dx 
is by definition equal to the probability of generating a value 
of z in the corresponding interval. 

➤ Let’s take q(z) to be the uniform distribution from 0 to 1. 

p(x)dx = q(z)dz



TRANSFORMATION METHOD
➤ Then 

➤ if we can do this integral and solve the resulting equation for 
x then we will have an expression that will give us what we 
want. Let’s try an example of an exponential pdf. 

➤ where the leading factor of μ is for normalization. Then 
plugging into the top equation we get  

➤ which we can solve for x to get

Z x(z)

�1
p(x0)dx0 =

Z z

0
dz0 = z

Z x(z)

�1
e�µxdx0 = 1� e�µx = z

p(x) = µe�µx

x = � 1

µ
ln(1� z)



EXERCISE 10.4
➤ Redo the calculation from Example 10.1, 

but this time using the faster method just 
described. Using the transformation 
method, generate 1000 random numbers 
from the nonuniform distribution to 
represent the times of decay of 1000 
atoms of 208Tl (which has half-life 3.053 
minutes). Then make a plot showing the 
number of atoms that have not decayed as 
a function of time, i.e., a plot as a function 
of t showing the number of atoms whose 
chosen decay times are greater than t.  

➤ Hint: You may find it useful to know that 
the package numpy contains a function 
sort that will rearrange the elements of an 
array in increasing order. That is, “b = 
sort(a)” returns a new array b containing 
the same numbers as a, but rearranged in 
order from smallest to largest. 



GAUSSIAN RANDOM NUMBERS
➤ The most common probability distribution is probably the 

normal or Gaussian distribution. What if we want to get 
random numbers from this distribution? 

➤ The transformation method fails in this case because we don’t 
know how to do the integral.  Instead imagine we have two 
independent random variable x and y, both drawn from the 
same Gaussian distribution.  The probability density of the 
point x,y is given by  

p(x) =
1p
2⇡�2

exp
�
� x2

2�2

�

p(x)dxp(y)dy =
1p
2⇡�2

exp
�
� x2

2�2

�
dx⇥ 1p

2⇡�2
exp

�
� y2

2�2

�
dy

=
1p
2⇡�2

exp
�
� x2 + y2

2�2

�
dxdy



GAUSSIAN RANDOM NUMBERS
➤ We can now switch to polar coordinates and our integral 

becomes 

➤ which is just p(r)dr ×p(θ)dθ. The second distribution is just 
the uniform distribution. The p(r) part we can now solve using 
the transformation method.  

➤ which gives  

➤ To get your Gaussian random variables choose z and θ from a 
uniform distribution, determine r from the above equation and 
then 

p(r, ✓)drd✓ =
1p
2⇡�2

exp
�
� r2

2�2

�
rdrd✓ =

1p
�2

exp
�
� r2

2�2

�
rdr ⇥ d✓

2⇡

1p
�2

Z r

0
exp

�
� r02

2�2

�
r0dr0 = 1� exp

� r2

2�2

�
= z

r =
p

�2�2 ln(1� z)

x = r cos(✓) y = r sin(✓)



EXAMPLE 10.2 RUTHERFORD SCATTERING

➤ At the beginning of the 20th century Rutherford and 
collaborators showed that a positively charged particle passing 
by at atom scatters by an angle θ given by  

➤ where Z is the atomic number  

➤ and b is the impact parameter. 

Nucleus

α

θb

tan
1

2
✓ =

Ze2

2⇡✏0Eb



EXAMPLE 10.2 RUTHERFORD SCATTERING

➤ Let us consider a beam of particles that has a Gaussian profile 
in x and y with σ=a0/100 and a0 is the Bohr radius. 

➤ Let’s simulate the scattering of one million particles and 
calculate the number that ‘bounce back’, have θ > 90. 

➤ For those b must be less than

Nucleus

α

θb

b =
Ze2

2⇡✏0E



from math import sqrt,log,cos,sin,pi 

from random import random 

# Constants 

Z = 79 

e = 1.602e-19 

E = 7.7e6*e 

epsilon0 = 8.854e-12 

a0 = 5.292e-11 

sigma = a0/100 

N = 1000000 

# Function to generate two Gaussian random numbers 

def gaussian(): 

    r = sqrt(-2*sigma*sigma*log(1-random())) 

    theta = 2*pi*random() 

    x = r*cos(theta) 

    y = r*sin(theta) 

    return x,y 

# Main program 

count = 0 

for i in range(N): 

    x,y = gaussian() 

    b = sqrt(x*x+y*y) 

    if b<Z*e*e/(2*pi*epsilon0*E): 

        count += 1 

print(count,"particles were reflected out of",N) 

When run the program will return 
something like  

1549 particles were reflected out of 1000000 

or about 0.15%. Rutherford was amazed by 
this result which led to the discovery of 
atomic nuclei. 



MONTE CARLO INTEGRATION
➤ We could have done the previous exercise analytically. 

Starting with the distribution being Gaussian we are just 
looking for those particles with r < b. So  

➤ plugging in the values from the example to get b gives a 
reflected percentage of 0.156% in good agreement with our 
calculation from random numbers.  

➤ But now think of this the other way around. If our random 
calculation gives the same result of an integral, that means we 
can evaluate integrals via random calculations.

1

�2

Z b

0
exp

�
� r2

2�2

�
rdr = 1� exp

�
� b2

2�2

�
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➤ Suppose we want to evaluate the integral  

➤ This function is shown in the figure below.  

➤ It is rather pathological, it varies infinitely fast at the 
edges, though it is well behaved in the middle. 

I =

Z 2

0
sin2

⇥ 1

x(2� x)

⇤
dx

➤ On the other hand 
since the function 
fits in the box we 
know its integral 
is less than 2. 

➤ The integration 
methods we have 
learned about will 
perform poorly 
because of the 
edges.



MONTE CARLO INTEGRATION
➤ One way to evaluate this integral is to choose a large number of 

random points in the square. The probability that a point will 
fall below the function is just p=I/A. 

➤ Thus if we generate N points and k fall below the curve we 
estimate the probability p=k/N, which implies the value of our 
integral I = kA/N. 

➤ This process goes by the name Monte Carlo Integration, named 
after the casino. It uses random processes to evaluate a definite 
integral.  

➤ Monte Carlo Integration is particularly useful for pathological 
integrands. Since we perform no extrapolation of the function, 
we don’t get caught up in the pathological behavior. 

https://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif

https://commons.wikimedia.org/wiki/File:Pi_30K.gif#/media/File:Pi_30K.gif


from math import sin 

from random import random 

def f(x): 

    return (sin(1/(x*(2-x))))**2 

N = 10000 

count = 0 

for i in range(N): 

    x = 2*random() 

    y = random() 

    if y<f(x): 

        count += 1 

I = 2*count/N 

print(I) 



MONTE CAROL INTEGRATION
➤ The main disadvantage of Monte Carlo integration is that it 

isn’t very accurate. If we can use the trapezoid method or other 
standard methods they will be much more accurate. 

➤ To see how accurate Monte Carlo integration is we can consider 
the chance a point is below the curve. p= I/A. The probability 
it falls above is then 1-p. Thus the probability we get exactly k 
points below the curve is 

➤ the standard deviation in the binomial distribution is  

➤ the accuracy improves as N-1/2, which is not very fast.

P (k) =

✓
N

k

◆
pk(1� p)N�k

�k =

r
I(A� I)

N



MONTE CAROL INTEGRATION
➤ In contrast remember that the error in the trapezoid rule was 

of order h2. Since h= (b-a)/N, this is N-2. The Simpson’s rule 
where the error went at h4 would be N-4. 

➤ Put another way a Monte Carlo integral with 100 sample 
points would have an accuracy of ~10%. The same number of 
points in the trapezoid method would have an accuracy of 
0.01%, while Simpson’s method would be 0.0001%. Clearly, 
one should only use the Monte Carlo method as a last resort. 

➤ However, the method we have been discussing is not a very 
good Monte Carlo method for performing integration. A 
much better method is called the mean value method.



MEAN VALUE METHOD
➤ Let us look at a general integral  

➤ The average value of f(x) in that range is then  

➤ So I = (b-a)<f>. Which means if we can estimate <f> we 
can evaluate I. A simple way to estimate <f> is just to 
measure f(x) at N points chosen uniformly at random 
between a and b. So we get that  

➤ This is the fundamental formula for the mean value method.

I =

Z b

a
f(x)dx

< f >=
1

b� a

Z b

a
f(x)dx =

I

b� a

I ' b� a

N

NX

i=1

f(xi)



MEAN VALUE METHOD
➤ How accurate is this method?  We can estimate the error using 

standard results for the behavior of random variables. 

➤ The variance of f, var f = <f2> - <f>2. Where  

➤ so the standard deviation on the integral from the mean value 
method is  

➤ so the error once again goes as N-1/2. The leading constant is 
smaller in this case so the error will be smaller then our 
previous ‘hit-or-miss’ method, even if it doesn’t continue to 
become smaller with larger N.

< f >=
1

N

NX

i=1

f(xi) < f2 >=
1

N

NX

i=1

|f(xi)|2

�0 =
b� a

N

p
Nvarf = (b� a)

r
varf

N



EXERCISE 10.5
➤ Write a program to evaluate 

the integral below using the 
‘hit-or-miss’ method with 
10,000 points. Also evaluate 
the error. 

➤ Now estimate the integral 
again using the mean value 
method. Again estimate your 
error.

I =

Z 2

0
sin2

⇥ 1

x(2� x)

⇤
dx

�0 =
b� a

N

p
Nvarf = (b� a)

r
varf

N

�k =

r
I(A� I)

N



INTEGRATION IN MANY DIMENSIONS
➤ In addition to the integration of pathological functions, Monte 

Carlo integration is used to evaluate high dimensional 
integrals. 

➤ For our previous integration methods, performing those 
techniques over more dimensions required us to sample 
values of the integrand over a grid. If we had four dimensions 
and we used 100 points in each dimension that would be 1004 
or 100 million points. 

➤ This is doable, but rather slow and higher dimensions quickly 
become undoable. Monte Carlo integration can give 
reasonably good answers with far fewer points.



INTEGRATION IN MANY DIMENSIONS
➤ Generalizing the mean value method is straightforward. Now 

we have  

➤ where ri is now a vector that is chosen randomly from the 
volume to be integrated over. 

➤ One area where this method is the standard is financial 
mathematics.  Predicting the value of a portfolio requires 
integrating over many variables. In order to make a quick 
trading decision, one doesn’t want to wait a long time 
(seconds) to perform the calculation. Thus Monte Carlo 
integration is the standard for that kind of analysis.

I ' V

N

NX

i=1

f(ri)



IMPORTANCE SAMPLING
➤ While Monte Carlo integration is a good approach for 

pathological functions, there are still some functions where it 
doesn’t preform well.  Particularly, cases where the integrand 
contains a divergence. For example  

➤ which arises in the theory of Fermi gasses. While this 
integrand diverges at x=0, the integral is finite.  But if you try 
to evaluate it with the mean value method you can run into 
problems because if your sample has an x close to zero it can 
contribute a very large amount. 

➤ Thus you’ll get large variations between different evaluations 
using this method.

I =

Z 1

0

x�1/2

ex + 1
dx



IMPORTANCE SAMPLING
➤ We can get around this problem by drawing our x point non 

uniformly from the integration interval. This technique is 
called importance sampling.  For any general function g(x) we 
can define a weighted average over the interval from a to b. 

➤ if we consider g(x)=f(x)/w(x) where f(x) is the function we 
want to integrate then  

➤ which means 

< g >w=

R b
a w(x)g(x)dx
R b
a w(x)dx

*
f(x)

w(x)

+

w

=

R b
a f(x)dx

R b
a w(x)dx

=
I

R b
a w(x)dx

I =

*
f(x)

w(x)

+

w

Z b

a
w(x)dx



IMPORTANCE SAMPLING 

➤ This formula is essentially just like the formula for the mean 
value method, except now we have a weighted average.  And 
how do we calculate this weighted average. Let’s convert our 
weight into a probability. 

➤ Let us sample N random points from this distribution. Then 
we have  

➤ we can now write the general weighted average of g(x) as 

p(x) =
w(x)

R b
a w(x)dx

NX

i=1

g(xi) '
Z b

a
Np(x)g(x)dx

hgiw =

R b
a w(x)g(x)dx
R b
a w(x)dx

=

Z b

a
p(x)g(x)dx ' 1

N

NX

i=1

g(xi)



IMPORTANCE SAMPLING

➤ where xi are chosen from the p(x) distribution. Putting this 
together with our expression for the integral gives us  

➤ this is the fundamental equation of importance sampling. 
Notice that if w(x)=1 this is the mean value method. So what 
to we gain if w(x) is a different function. If properly chosen 
we can use w(x) to remove pathologies in f(x). The price we 
pay for this extra flexibility is that we have to chose x from a 
nonuniform distribution.

hgiw =

R b
a w(x)g(x)dx
R b
a w(x)dx

=

Z b

a
p(x)g(x)dx ' 1

N

NX

i=1

g(xi)

I ' 1

N

NX

i=1

f(xi)

w(xi)

Z b

a
w(x)dx



IMPORTANCE SAMPLING
➤ Let’s go back to our original example to see how this works in 

practice. Our pathological integral is  

➤ so we choose a weighting of w(x) = x-1/2 to remove the 
divergent behavior. That gives us 

➤ so now we can evaluate the integral taking random points 
from the p(x) distribution and using g(x) which has no 
divergent behavior. 

I =

Z 1

0

x�1/2

ex + 1
dx

g(x) =
f(x)

w(x)
=

1

ex + 1 and p(x) =
x�1/2

R 1
0 x�1/2dx

=
1

2
p
x
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EXERCISE 10.7 VOLUME OF A HYPERSPHERE

➤ This exercise asks you to estimate the volume of a sphere of unit 
radius in ten dimensions using a Monte Carlo method. Consider 
the equivalent problem in two dimensions, the area of a circle of 
unit radius: The area of the circle, the shaded area, is given by the 
integral  

➤ where f (x, y) = 1 everywhere inside the circle and zero 
everywhere outside. In other words,  

➤ So if we didn’t already know the area of the circle, we could 
calculate it by Monte Carlo integration. We would generate a set 
of N random points (x, y), where both x and y are in the range 
from −1 to 1. Then the two-dimensional version of the equation 
to the left for this calculation would be  

➤ Generalize this method to the ten-dimensional case and write a 
program to perform a Monte Carlo calculation of the volume of a 
sphere of unit radius in ten dimensions. 

➤ If we had to do a ten-dimensional integral the traditional way, it 
would take a very long time. Even with only 100 points along each 
axis (which wouldn’t give a very accurate result) we’d still have 
10010 = 1020 points to sample, which is impossible on any 
computer. But using  the Monte Carlo method we can get a pretty 
good result with a million points or so. 

I ' V

N

NX

i=1

f(ri)

I =

Z Z 1

�1
f(x, y)dxdy

f(x, y) = 1 if x2 + y2  1

I ' 4

N

NX

i=1

f(xi, yi)



STATISTICAL MECHANICS
➤ Importance sampling isn’t just a fancy trick for Monte Carlo 

integration, it plays a role in many other problems.  

➤ Statistical mechanics is the branch of physics most closely 
aligned with Monte Carlo techniques. This is because 
statistical mechanics is always looking at random processes. 

➤ Let’s consider the fundamental problem of statistical 
mechanics, calculating the average (or expectation) value of a 
quantity in a physical system in thermal equilibrium. If the 
systems is at temperature T then it will not be in one state, 
but will randomly move between different states where the 
probability of being in any state is given by

P (Ei) =
e��Ei

Z
Z =

X

i

e��Ei



➤ where β = 1/(kBT). The average value of quantity X is then  

➤ In some cases we can calculate this sum exactly, but often not. 
So this is a good problem for numerical approaches. Normally, 
we can’t simply evaluate the sum numerically either.  For 
example there are 1023 molecules in a single mole of gas. If 
the molecules each had only two possible quantum states 
(when they have many) then the number of states in this 
system would be 210**23 which is an insanely large number. No 
super computer can get even close to evaluating this many 
states. Thus we must come up with some approximations.

P (Ei) =
e��Ei

Z
Z =

X

i

e��Ei

hXi =
X

i

XiP (Ei)



STATISTICAL MECHANICS
➤ So let’s try Monte Carlo, instead of evaluating all states, we will 

randomly sample N states and as N gets larger we will get closer 
to the correct value 

➤ Unfortunately in most situations this will not work. The 
Boltzmann probability is exponential, so the vast majority of 
states of exponentially small probability. Thus mosts of our 
randomly chosen energies contribute almost nothing to this sum.  

➤ But we have just discussed a method to overcome this problem, 
important sampling. If we weight which energies we choose 
randomly then we can get the important ones in our sum. 

hXi '
PN

k=1 XkP (Ek)PN
k=1 P (Ek)



IMPORTANCE SAMPLING AND STATISTICAL MECHANICS
➤ Here’s how it works in detail. For any quantity gi that 

depends on the states i, we can define the weighted average  

➤ if gi = Xi P(Ei)/wi then we get  

➤ which gives us, just like before, that  

➤ so if we use a weighted distribution of states then the average 
value of our quantity is just the weighted average of the 
quantity times the sum of the weights.

hgiw =

P
i wigiP
i wi

hXiP (Ei)

wi
iw =

P
i wiXiP (Ei)/wiP

i wi
=

hXiP
i wi

hXi = hXiP (Ei)

wi
iw

X

i

wi



IMPORTANCE SAMPLING AND STATISTICAL MECHANICS
➤ Thus to calculate the average of X we can use the formula  

➤ Note that the first sum is over the k states we sample, but the 
second is over all states. The second sum is usually done 
analytically if possible. 

➤ If we choose weights that sample where the probability is large. 
This is easy to do. Just choose the probability as the weight, wi 
= P(Ei).  Then Σwi = 1 by definition and we get 

➤ where we have choses the states with the pdf of the 
Boltzmann’s distribution.

hXi ' 1
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IMPORTANCE SAMPLING AND STATISTICAL MECHANICS
➤ An alternative (and more physical) way of thinking about this 

approach is to think about the Monte Carlo as the behavior of an 
actual system. 

➤ If we had some physical system it would start off in some initial 
state.  Then it would move to another state with a probability given 
by Boltzmann. It would then keep changing states, each time with a 
probability related to its Boltzmann distribution.  

➤ If we measured a quantity for the system we would get an average of 
the values that quantity has over the states the system has been in 
while we performed our measurement. 

➤ Thinking of it this way importance sampling is just physically 
modeling what the system might do in an actual physics experiment.



MARKOV CHAIN
➤ Why it looks like we have a general method for statistical 

mechanics, there is still one problem, we have to calculate 
P(Ei). 

➤ The exponential part is easy, but remember the probability 
was also normalized by the sum of states Z, called the 
partition function. Unfortunately, it is usually not easy to 
calculate Z. 

➤ Luckily there is a solution to this problem, we can make our 
calculation without knowing Z by a technique called a Markov 
chain.



MARKOV CHAIN
➤ Our goal is to have a set of states for the sum to get an 

average. We will do this by generating a sequence of states, 
that is the chain part of the Markov chain. 

➤ Let’s start with some state i. Now the next state, instead of 
choosing it randomly from the full ensemble, let’s just make a 
small change to the system to get a new state j.  

➤ The probability of going from state i to j is given by a transition 
probability Tij. If we can choose our transition probability the 
right way then we can issue then we can insure that the 
chance of ending up at any one state on the chain is the 
Boltzmann probability.



MARKOV CHAIN
➤ So how do we choose Tij? Well we know ΣTij=1, we have to 

end up at some state. Now we also want Tij to relate to the 
Boltzmann distribution so we have  

➤ Note that Z cancels out in this equation.  Now let’s suppose 
we found the set of probabilities Tij that satisfy the above 
equation and the probability that we are in state i on one 
particular step of the chain is given by P(Ei).  Then the 
probability of being in state j on the next step is the sum that 
we got there from any i.

Tij

Tji
=

P (Ej)

P (Ei)
=

e��Ej/Z

e��Ei/Z
= e��(Ej�Ei)

X

i

TijP (Ei) =
X

i

TjiP (Ej) = P (Ej)
X

i

Tji = P (Ej)



MARKOV CHAIN
➤ What this equation tells us is that if we have the right 

transition probabilities for every state on one step, then we 
have them for all other steps.  

➤ We have not shown that it we start with some other 
distribution of states that we will converge to the Boltzmann 
distribution, but that is also the case (a proof is given in the 
appendix of the text book). 

➤ But the important point is that if you start the system in any 
random state and let the chain run long enough then the 
distribution over states will converge to the Boltzmann 
distribution. 



METROPOLIS ALGORITHM
➤ We still haven’t discussed how to determine our transition 

probabilities Tij.  There is actually a lot of freedom in how they 
are chosen, that is many choices will still satisfy the equations 
we have needed to show that they are good choices. 

➤ The most common choice is one that leads to what is called the 
Metropolis algorithm. To understand how this algorithm works 
note that we are allowed to visit the same state more than once 
in our Markov chain. That is Tii can be greater than 0. 

➤ Let’s consider the change to our system to be the change of just 
one elements energy level chosen at random.  In general this 
won’t satisfy our previous equation but then let’s accept or 
reject this state with a probability Pa given by 

Pa = 1 if Ej  Ei Pa = e��(Ej�Ei) if Ej > Ei



METROPOLIS ALGORITHM

➤ In other words if the change decreases the energy of our system 
we accept it. It if increases the energy then there is some 
probability Pa we accept it, otherwise we stay in the same state 
till the next step in our chain. 

➤ Under this scheme the total probability Tij of making a move 
from state i to j is the probability that we choose that move our 
of all possible moves, which is just 1/M if there are M possible 
moves, times the probability we will accept that move. So for 
example if Ej > Ei then

Pa = 1 if Ej  Ei Pa = e��(Ej�Ei) if Ej > Ei

Tij =
1

M
⇥ e��(Ej�Ei)

Tji =
1

M

=>
Tij

Tji
=

e��(Ej�Ei)/M

1/M
= e��(Ej�Ei)



METROPOLIS ALGORITHM
➤ Likewise if Ei >= Ej then 

➤ In both cases we get agreement with the condition we asserted 
in the beginning of this discussion.  

➤ Thus we have an method of generating probabilities that satisfy 
the conditions we states, which we have shown means that we 
get a probability of states distribution that is the same as the 
Boltzmann’s distribution.  

➤ The metropolis algorithm is a valid method to create a Markov 
chain.

=>
Tij

Tji
=

1/M

e��(Ei�Ej)/M
= e��(Ej�Ei)

Tij =
1

M

Tji =
1

M
⇥ e��(Ei�Ej)



METROPOLIS ALGORITHM

1. Choose a random starting state i. 

2. Choose a move uniformly at random from an allowed set of 
moves 

3. Calculate the acceptance probability Pa for the move. 

4. Randomly decide if the move is accepted in which case the state 
becomes j or is rejected in which case the state remains i. 

5. Measure the quantity of interest X for the current state and add it 
to a running total. 

6. Repeat from step 2. 

➤ When we have taken a large number of steps N, we take our 
running total and divide it by N to get <X>.



METROPOLIS ALGORITHM
➤ While the metropolis algorithm is pretty straightforward there are 

number of subtitles to be aware of: 

➤ When you reject a move that is still a step and the value of the 
quantity at that step must be added to your running total again. 

➤ It must be the case that the number of moves M be the same 
from i and j. 

➤ The move set must be able to actually get you to every possible 
state of the system. A move set that does this is called ergodic, 
which is required for the Metropolis algorithm to work. 

➤ Although the Markov chain always converges to the correct 
Boltzmann distribution, we don’t know how many steps this 
will take and there is no general way to know.



EXAMPLE 10.3: MONTE CARLO SIMULATION OF AN IDEAL GAS
➤ The quantum states of an atom of mass m in a cubic box of 

length L have three integer quantum numbers, nx, ny, and 
nz=1…∞ and energies by  

➤ An ideal gas is a gas of N such atoms that don’t interact with 
one another. So the total energy is just the sum of energies. 

➤ So lets perform a Monte Carlo simulation for this gas.  First 
we need our move set. Let’s just let one of the atoms change 
one of its quantum numbers by +1 or -1.

E(nx, ny, nz) =
⇡2~2
2mL2

(n2
x + n2

y + n2
z)

E =
NX

i=1

E(n(i)
x , n(i)

y , n(i)
z )



EXAMPLE 10.3: MONTE CARLO SIMULATION OF AN IDEAL GAS
➤ If for example the nx number changed by 1 the change in 

energy would be  

➤ a decrease of 1 gives  

➤ Let’s perform our simulation for N=1000 particles at a 
temperature kBT=10. For simplicity let’s take m=h=L=1 and 
start in the ground state, nx=ny=nz=1. Then we select a 
particle, axis and sign randomly for each move with a 
probability given by the above energy for any energy 
increases.  Our code might look like this

�E =
⇡2~2
2mL2

[(nx + 1)2 � n2
x] =

⇡2~2
2mL2

(2nx + 1)

�E =
⇡2~2
2mL2

[(nx � 1)2 � n2
x] =

⇡2~2
2mL2

(�2nx + 1)



T = 10.0 

N = 1000 

steps = 250000 

# Create a 2D array to store the quantum numbers 

n = ones([N,3],int) 

# Main loop 

eplot = [] 

E = 3*N*pi*pi/2 

for k in range(steps): 

    # Choose the particle and the move 

    i = randrange(N) 

    j = randrange(3) 

    if random()<0.5: 

        dn = 1 

        dE = (2*n[i,j]+1)*pi*pi/2 

    else: 

        dn = -1 

        dE = (-2*n[i,j]+1)*pi*pi/2 

    # Decide whether to accept the move 

    if n[i,j]>1 or dn==1: 

        if random()<exp(-dE/T): 

            n[i,j] += dn 

            E += dE 

    eplot.append(E) 

# Make the graph 

plot(eplot); ylabel(“Energy”); show() 

Notice that it takes like 50000 steps for the 
model to reach equilibrium. We wouldn’t want 
to use those first steps in determining the 
average value of a quantity since they just have 
to do with where we started.



SIMULATED ANNEALING
➤ For many problems our goal is to find the global minimum.  

We discussed finding a minimum previously, but not a global 
minimum and mostly for one dimensional systems. 

➤ Finding a global minimum is hard. There are many 
approaches to this problem, but none are guaranteed to be 
successful. One approach which is closely related to the 
Monte Carlo Markov Chain method we have been discussing 
is called simulated annealing. 

➤ The idea behind simulated annealing is that we will look for 
our global minimum in a way similar to our solution of the 
Boltzmann problem. 



SIMULATED ANNEALING
➤ That is we will start with a guess and then move randomly to 

other states. If the ‘energy’ of the other states is less we will 
move to it as we a looking for the lowest ‘energy’ state.   

➤ However, just moving to lower energy states may leave us in a 
local, but not global minimum. Thus we also assume we have 
a certain temperature, so there is a probability to move to a 
higher energy state, just like in the metropolis algorithm.  

➤ But if our temperature is very high, then the system won’t 
move to the ground state at all. So we do something that 
resembles the physical process of annealing.



SIMULATED ANNEALING 
➤ Many substances, like glass, if you let them cool quickly don’t 

end up in the ground state. Instead when glass cools defects 
occur, increasing the thermal stress, and making the glass 
more likely to break. To overcome this glass makers anneal 
the glass, they cool it slowly, so that defects are removed and 
the system cools to the global ground state instead of a local 
minimum. 

➤ The goal of simulated annealing is the same. We start the 
metropolis algorithm with some temperature and then we 
slowly reduce it. In this way our algorithm is likely to jump 
out of local minimum, because of the temperature and is 
more likely to finally settle in the global minimum.



SIMULATED ANNEALING 
➤ Implementing simulated annealing is a straight forward extension of 

the metropolis algorithm. All that needs to be added is an initial 
temperature and a cooling schedule. 

➤ The initial temperature should be chosen so that the Markov chain can 
easily move to higher energy states. In other words that the 
temperature is higher than the typical energies between states. This 
way the starting state doesn’t matter as the systems will easily move to 
any possible random state. 

➤ An exponential is the most common choice for the cooling schedule 

➤ The choice of τ usually most be determined by trial and error. The 
slower the cooling (larger τ) the more likely you are to find the global 
minimum, but also the longer the process will take.

T = T0e
�t/⌧



EXAMPLE 10.4 THE TRAVELING SALESMAN
➤ As an example of simulating 

annealing let us look at the 
traveling salesman problem.  

➤ The problem is we have a 
salesperson who needs to visit N 
cities on her trip and we want to 
figure out what is the shortest 
route between the N cities. 

➤ While this might seem like a silly 
problem it is one that is studied a 
lot in computational science 
because it turns out to be NP-hard.
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➤ What that means is that it 
is very hard to find a fast 
method for solving the 
problem. 

➤ Note the direct approach 
goes as N! which is very 
bad scaling.



THE TRAVELING SALESPERSON
➤ Let us choose the locations of the N cities randomly within a 

unit square. Let the distance be on a flat surface. Each city is 
then represented by a vector ri = (xi, yi) and rN = r0 since we 
have to end up where we begin. The distance the salesperson 
travels is then  

➤ we want to minimize D for all possible ordering of the cities. 
Our set of moves can be swapping two cities. So we start with 
an initial ordering of the cities and then we swap two and see 
if D becomes shorter or longer. 

D =
N�1X

i=0

|ri+1 � ri|



from math import sqrt,exp 

from numpy import empty 

from random import random,randrange 

from visual import sphere,curve,display 

N = 25 

R = 0.02 

Tmax = 10.0 

Tmin = 1e-3 

tau = 1e4 

# Function to calculate the magnitude of a vector 

def mag(x): 

    return sqrt(x[0]**2+x[1]**2) 

# Function to calculate the total length of the tour 

def distance(): 

    s = 0.0 

    for i in range(N): 

        s += mag(r[i+1]-r[i]) 

    return s



# Choose N city locations and calculate the initial distance 

r = empty([N+1,2],float) 

for i in range(N): 

    r[i,0] = random() 

    r[i,1] = random() 

r[N] = r[0] 

D = distance() 

# Set up the graphics 

display(center=[0.5,0.5]) 

for i in range(N): 

    sphere(pos=r[i],radius=R) 

l = curve(pos=r,radius=R/2)



# Main loop 

t = 0 

T = Tmax 

while T>Tmin: 

    # Cooling 

    t += 1 

    T = Tmax*exp(-t/tau) 

    # Update the visualization every 100 moves 

    if t%100==0: 

        l.pos = r 

    # Choose two cities to swap and make sure they are distinct 

    i,j = randrange(1,N),randrange(1,N) 

    while i==j: 

        i,j = randrange(1,N),randrange(1,N)



    # Swap them and calculate the change in distance 

    oldD = D 

    r[i,0],r[j,0] = r[j,0],r[i,0] 

    r[i,1],r[j,1] = r[j,1],r[i,1] 

    D = distance() 

    deltaD = D - oldD 

    # If the move is rejected, swap them back again 

    if random()>exp(-deltaD/T): 

        r[i,0],r[j,0] = r[j,0],r[i,0] 

        r[i,1],r[j,1] = r[j,1],r[i,1] 

        D = oldD



One solution found by running the program. The solution looks rather 
reasonable by eye. The visual package was used to make the graphic.



Another solution. However, this time we can see it is not the best solution. It would be 
more efficient two swap the two points where the route crosses. This is typical of 
simulating annealing. It will usually give you a pretty good solution, but maybe not the 
best possible solution.



TERMINOLOGY
➤ Pseudorandom Number - a completely deterministic algorithm that creates 

numbers that appear to be random 

➤ Transformation Method - a way to transform uniform random numbers to other 
distributions  

➤ Monte Carlo Integration - an integration method where the sampling points are 
chose randomly 

➤ Importance Sampling - weighting the points when using a Monte Carlo method 

➤ Markov Chain - a way of selecting points using previous points (the chain) so 
that the sample approaches a desired distribution 

➤ Metropolis Algorithm - an algorithm that creates a Markov Chain by using a 
transitions probability that is accepted or rejected. 

➤ Simulated Annealing - An algorithm for optimization where one starts with a 
high ‘temperature’ to explore many states and then the temperature is ‘cooled’ 
to find the minimum.  


