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NUMERICAL SIMULATION
➤ One of the main uses of computers in the sciences is for performing 

numerical simulations. 


➤ The use of the term simulation can be confusing because it is often 
used interchangeably with modeling. One might say they have 
made a simulation of a phenomena, meaning they have made a 
model of the phenomena.


➤ I will try to use numerical simulation to mean a numerical 
technique where a phenomena is modeled by having elements of it 
represented in a computer and then evolved following certain rules.


➤ Those rules can ODEs or PDEs or logic or anything else.  The key 
aspect of a numerical simulation is that one does not know the 
future state of the system on which the rules will be applied.

soccer example - https://www.youtube.com/watch?v=cP035M_w82s

https://www.youtube.com/watch?v=cP035M_w82s


WHAT IS AN ELEMENT?
➤ In some situations what should be an element in the simulation is 

obvious. For example simulating the motion of the planets each planet 
should be an element.


➤ However, if you also want to simulate the stresses on the planets by 
tidal forces, or the possible destruction of a moon, then treating the 
planets as point particles won’t work.


➤ Instead you might have to have each element in the simulation be a 
piece of a planet, so that a planet would be made up of hundreds or 
thousands of pieces. 


➤ Thinking about what the elements are in a simulation, what 
limitations that imposes and how the simulation would be different 
with different elements is an important aspect of numerical simulation.



FLUID MECHANICS 
➤ One area of physics where numerical simulation plays an 

enormous role is fluid mechanics. This is largely because 
almost all fluid mechanics problems are unsolvable 
analytically. 


➤ In fluid mechanics a fluid has some properties that can have 
differing values as every point in space and can change with 
time.


➤ A simple set up can lead to a wide range of behaviors like the 
Kelvin-Helmholtz instability you see here.

video - https://www.youtube.com/watch?v=qEGbzZM0Baw 

https://www.youtube.com/watch?v=qEGbzZM0Baw


HOW TO WE REPRESENT OUR FIELD
➤ One interesting thing about fluid mechanics is that there are a 

number of ways of representing the fluid in space and thus 
implementing a simulation of the fluid.  


➤ One way to picture a fluid is to make a grid of space and then to 
view the fluid as flowing through the grid. This is called the 
Eulerian approach.  In it the fluid has certain properties in each 
cell, and then those properties change as new fluid flows in and 
out of the cell boundaries.


➤ An alternative picture is to picture a mass element of the fluid 
and then let it move along as the fluid flows. This is called the 
Lagrangian approach.  In it each element reacts to the hydro 
dynamical forces changing its position, density and temperature.





EQUATIONS OF FLUID DYNAMICS 
➤ The equations of fluid dynamics are based on the three main 

conservation laws; conservation of mass, conservation of 
momentum (or Newton’s Second Law), and conservation of 
energy (or the First Law of Thermodynamics).


➤ This conservation laws can be expressed in integral or differential 
form, we will focus on the differential form. 


➤ Conservation of mass, or the continuity equation can be written 
for a fluid with density ρ and flow velocity u as 


➤ If we think of the fluid in a cell, then this says the change of 
density in the cell is given by the rate at which the fluid flows 
into or out of the cell.
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MATERIAL DERIVATIVE 
➤ We have discussed how there are different ways to view fluid 

flow, the Lagrangian and Eulerian approaches. These 
difference were not developed for simulations, but for the 
calculus of the equations.  If our coordinates are going to flow 
with the fluid then


➤ We can define dx/dt = u the flow of the fluid and then a 
material or convective or Lagrangian derivative as 


➤ When expressed in Lagrangian form fluid equations are 
expressed using this derivative.
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CONSERVATION OF MOMENTUM
➤ The general, non-relativistic form of momentum conservation 

is given by the Cauchy momentum equation. In Lagrangian 
(convective) form it is 


➤ where σ is the stress tensor and g represents all body forces like 
gravity, electricity-magnetism, etc.


➤ In Eulerian (conservative) form the equation becomes 


➤ The left hand side is just converting the material derivative 
while the right hand side we have also broken the stress tensor 
into the diagonal terms (pressure) and off diagonal elements. 
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NAVIER-STOKES EQUATION

➤ This equation is usually simplified by assuming symmetries. If 
we assume the stress tensor is isotropic and Galileian 
invariant then the stresses can be expressed as a scalar ν 
which is called the viscosity. Under these assumptions we get 
the Navier-Stokes equation


➤ If the fluid is incompressible, like many liquids, then ∇·u = 0 
and the Navier-Stokes equation reduces to 
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EULER’S EQUATIONS
➤ A further simplification that is applicable in some situations is 

to ignore the viscosity, ν=0.  Then we recover a momentum 
equation that was first proposed by Euler.


➤ Often this equation for the momentum conservation and the 
equation of mass conservation are called Euler’s equations for 
fluids.


➤ Notice that fluids cover a wide range of phenomena. Depending 
on the fluid and the conditions it is under; pressure, 
temperature, velocity, etc. Wether only pressure is important, 
or also viscosity or if the fluid can be compressed or if the 
anisotropic nature of the stress tensor is important will vary.
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ENERGY CONSERVATION
➤ Finally there is the equation of energy conservation. In the 

Lagrangian form it is 


➤ where h is the enthalpy, k is the thermal conductivity and Φ is 
the viscous dissipation function, which is how mechanical 
energy of flows is converted into heat.


➤ Like the momentum equation there are many cases where 
thermal conductivity and/or viscous dissipation are negligible 
in which case the change in enthalpy is just do to changes in 
pressure.
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FLUID DYNAMICS EXAMPLE 

➤ Let’s consider a simple system, governed by Euler’s equations 
(no viscosity, incompressible) and with no external forces. 
Then are equations for mass and momentum in the Eulerian 
approach would be


➤ Let us consider a small perturbation in a uniform fluid. So the 
values of ρ, P and u will differ only by small amount from 
their average values. Then we can expand the quantities by 
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FLUID DYNAMICS EXAMPLE

➤ Putting these variables back into the fluid equations gives


➤ We can now keep only first order terms to linearize the 
equation. This gives us 


➤ There zeroth order terms are removed because the zeroth 
order terms had no motion, u0=0. 


➤ This makes ∂ρ0/∂t = 0 and ∇P0 =0.
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FLUID DYNAMICS EXAMPLE 
➤ Now let’s take a second time derivative of the 

mass conservation equation.


➤ And let’s take the divergence of the momentum 
conservation equation.


➤ Substituting the second equation into the first 
gives 
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EQUATION OF STATE

➤ In general the fluid equations themselves are not enough to 
solve for the fluids behavior. One also needs what is called an 
equation of state, which is a relationship between density and 
pressure in the fluid. 


➤ The ideal gas law is an example of an equation of state. In it 
pressure is proportional to density.


➤ Where we have introduced cs2 as the constant of 
proportionality. We can now substitute this in to our equation 
to get 

P = c2s⇢
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SOUND WAVES

➤ This is of course just the wave equation and we see that cs is the 
sound speed in the fluid.  Solution will be of the form 


➤ So we find that small perturbations in a uniform at rest fluid 
will generate sound waves that propagate through the fluid with 
a speed cs.


➤ This is what we expect, but we can see how it comes about from 
the fluid equations. If the viscosity hadn’t been zero then there 
would have been a damping term and the sound waves would 
die out over time having their energy go into heating the fluid.

@2⇢1
@t2

� c2sr2⇢21 = 0

⇢1 = Aei(k·x�!t) where ! = csk



DISCRETIZATION
➤ The grid


➤ Advection


➤ The CFL condition


➤



DISCRETIZATION
➤ We now need to discretize our problem to transform it into 

something we can solve numerically.


➤ When we looked at PDEs earlier we focused on the finite-
difference approach. We discretized the problem by creating a 
grid and only solving for the values of our function at those 
grid points. 


➤ Another way to discretize a function is called the finite-volume 
approach. In this case the grid divides our function into 
volumes and the values at the grid points are the volume 
averaged value of the function in that cell.


➤ The finite-volume technique is often used for problems where 
conservation of a quantity is an important feature.  



finite 
difference on 
the edge or 
the center of a 
grid and 
finite volume



DIFFERENCES
➤ Calculating derivatives in the finite-volume approach is 

slightly different if one wants to go higher than 2nd order 
accuracy. 


➤ To approximate higher order derivatives one first interpolates 
the value of the function from the mean value in the volume 
over the number of cells to give the desired accuracy.  


➤ The derivative is then calculated from this fit or spline. For 
example a fit to three cells is just a parabola and give us the 
central difference formula we are used to, 

@f

@xi
=

f(xi+1)� 2f(xi) + f(xi�1)

�x



CONSERVATION
➤ The finite-volume grid is particularly useful when dealing with 

conserved quantities. Consider an equation like we have seen for 
conservation of mass for a fluid


➤ where U is a vector of quantities and F(U) is the flux of those 
quantities. Now if we integrate over a cell volume and normalize 
by the width of the cell we get


➤ but according to the divergence theorem (or Gauss’s Law) the 
right hand side is just the flux through the cells walls. While 
moving the time derivative outside the integral the left hand side 
is just the volume average of our quantities U.
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CONSERVATION

➤ So when we update the average property in a cell it is determined 
by the fluxes through the cell boundaries. But the cell boundaries 
are shared, so the flux lost through a boundary is the flux gained 
in the next cell.


➤ This means that to roundoff error the amount of the property is 
conserved. Whatever is lost from one cell must be gained by 
other cells. 


➤ This property makes finite-volume very attractive for problems 
where you are concerned about conserved quantities and since 
the equations of fluid dynamics are conservation equations finite-
volume is one of the favored approaches.
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BOUNDARY CONDITIONS
➤ One issue that arises in finite-volume grids is what happens at 

the boundary of your grid. 


➤ Since we update our average value based on the fluxes into 
the cell, what do we do with the end cells?


➤ The usually solution is to have a layer of ghost cells at the end 
of our ‘real’ cells. The ghost cells will have flux flow with the 
rest of the cells, but the values of properties in them are set 
by boundary conditions. That is not updated like the rest of 
the cells. 


➤ How the ghost cells are treated is an important issue when 
using this approach. 



MORE ON GRIDS
➤ Domain Decomposition - Parallelizing a grid can work by breaking it up 

into domains and then treating each domain on a separate processor. 
Then the boundary ghost cells get their values from the other domains. 


➤ Adaptive Mesh Refinement - Grids can also be extended by adding finer 
resolution grids based on relevant criteria like the density in the grid. In 
this way you can have high resolution in some places and low resolution 
in others. 


➤ Mapped Grids - One is also not restricted to rectangular grids. One can 
map a grid into any shape as long as you know which cell is next to 
which and the area of the surface between them.


➤ Lagrangian Grids - Also, the grid does not need to be static. One can have 
the grid move in space, in some way that makes sense to the problem. In 
this way one can gain many of the advantages of a Lagrangian approach.



➤ Domain Decomposition

➤ Adaptive Mesh Refinement 



ADVECTION

➤ A physical process whose solutions are similar to what is 
done for fluid dynamics, but is in general simpler, is 
advection.  A linear advection equation is of the form:


➤ where a is some scalar quantity that gets advected with a 
velocity u. In this simple form a(x,t) will simply move at the 
speed u, so a(x’=x+u(t’-t),t’) is just a(x,t). 


➤ Trying to solve such an equation numerically using a finite 
difference method will lead to instabilities like we saw when 
learning about FTCS (forward-time centered-space).
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ADVECTION - FVM

➤ Instead we can approach the problem using the finite-volume 
method. Then we want the equation in conservative form


➤ where f(a) is the flux of a which is just ua in this case. Now to 
discretize we use a finite volume grid where each cell 
represents the average volume of the fluid in that cell. 


➤ Integrating over a cell i gives 
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COURANT CONDITION

➤ We also need to discretize the time derivative. It can be 
shown that for the solution to be stable the time step must be 
less than the time it takes information to cross a cell. 


➤ This is called the Courant-Friedrichs-Lewy or CFL or just Courant 
condition. It is an extremely important condition in numerical 
simulations and often is the main issue driving the cost of the 
simulation.   


➤ One can define a CFL number, C,  and express the time step 
size using that number. C might be 0.7. 
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RIEMANN PROBLEM
➤ So this would give us something like 


➤ where we evaluate the fluxes a half time step ahead and n is 
the number of time steps we have done.


➤ The right side of the equation, solving for the flux between 
two piecewise constant data with a single discontinuity is 
called a Riemann problem.  Thus the finite-volume approach 
always becomes a series of Riemann problems. 
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LIMITING THE SLOPE
➤ In order to get a more accurate (higher order) approximation 

we don’t just take the value of a in cell i, but approximate a 
slope of a to the boundary based on the cells on either side of 
i.  This can be extended to higher order interpolations using 
more than just neighboring cells.


➤ It is also common to limit the value of this slope to dampen 
instabilities. The figure below shows a slope and a limited 
slope in red.



EULER’S EQUATIONS
➤ Now let us return to Euler’s Equations. While significantly 

more complicated than the advection equation we will solve 
them in essentially the same way.  


➤ Written like this we see they look like 3 divergence equations, 
but are also three nonlinear simultaneous equations. For 
simplicity let’s move to 1D equations. 
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EULER’S EQUATIONS - 1D
➤ Then we could write all 3 equations together as a vector 


➤ where 


➤ We can then compute the Jacobian of the flux vector and 
diagonalize it. The eigenvalues are then the speeds at which 
information propagates through the fluid. 


➤ Discretizing on a finite-volume grid we again have the 
Riemann problem on the cell interfaces.  
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GODUNOV SCHEME
➤ This Riemann problem is much harder to solve, it is nonlinear 

and involves 3 waves, but there are many methods which we 
won’t detail here.


➤ With a Riemann solver in place updating our grid becomes 


➤ This approach to solving the problem is called a Gudunov 
scheme after the man who proposed it (in 1959).


➤ It is one of the most popular approaches to solving 
computational fluid dynamics, though there are many other 
methods. Some slight alterations while others approach the 
problem in a completely different framework.
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SMOOTH PARTICLE HYDRODYNAMICS
➤ A completely different approach also widely used in 

hydrodynamic is to discretize the fluid by mass instead of 
volume.


➤ In this case the fluid element in represented by a particle that 
has a conserved mass and other fluid properties that vary with 
time. 


➤ The fluid properties are not associated with just one particle, 
but instead are a smoothed over some number of neighbor 
particles, usually 32 or more.


➤ The smoothing kernel can be different functions like a 
Gaussian for example.



SMOOTH PARTICLE HYDRODYNAMICS
➤ To determine the fluid properties at a particle’s location one 

finds the N nearest neighbors and then calculates the fluid 
properties smoothing using the SPH kernel. 


➤ One then solves the fluid dynamic equations to update the 
flow velocity for that particle and then that particle is 
advanced according to that calculation. 


➤ This method is explicitly Lagrangian as the particles are 
moved along the flow lines. It also explicitly conserves mass.


➤ The method is known to have issues with shock capturing 
and to create artificial surface tension when one has a 
multiphase medium.








