Peter Franco

TCET 2220
Homework 4
(3-1) A traveling wave of current in milliamperes is given by with t in seconds and x in meters. Determine the following:

$$
=(*-\ldots)
$$

(a) Direction of propagation

Since the argument of the function has the difference between the time and displacement terms, the wave is traveling in the positive x -direction
(b) Peak value

$$
\mathrm{I}=8 \mathrm{~A}
$$

(c) Angular frequency

$$
2^{\prime} * 10 \mathrm{rad} / \mathrm{sec}
$$

(d) Phase constant

$$
\mathrm{b}=0.025 \mathrm{rad} / \mathrm{m}
$$

(e) Cyclic frequency

$$
\mathrm{F}=\frac{\gamma}{2^{\prime}}=\frac{2^{\prime} * 10}{2^{\prime}}=1 \mathrm{MHz}
$$

(f) Period

$$
\mathrm{T}=\frac{1}{\mathrm{~F}}=\frac{1}{1 \mathrm{MHz}}=1 \mathrm{us}
$$

(g) Wavelength

$$
x=\frac{2^{\prime}}{6}=\frac{2^{\prime}}{0.025}=251 \text { meter }
$$

(h) Velocity of propagation

$$
\mathrm{V}=\mathrm{F} * \boldsymbol{r}=1 \mathrm{MHz} * 251.2 \mathrm{~m}=251.2 * 10 \mathrm{~m} / \mathrm{s}
$$

(3-2) A traveling wave of voltage in volts in given by
with t in seconds and x in meters. Determine the following:
(a) Direction of propagation

Since the argument of the function has the difference between the time and displacement terms, the wave is traveling in the negative x -direction
(b) Peak value

$$
V=15 \mathrm{~V}
$$

(c) Angular frequency

$$
10 \mathrm{rad} / \mathrm{sec}
$$

(d) Phase constant

$$
\mathrm{b}=0.35 \mathrm{rad} / \mathrm{m}
$$

(e) Cyclic frequency

$$
\mathrm{F}=\frac{\gamma}{2^{\prime}}=\frac{10}{2^{\prime}}=15.9 \mathrm{MHz}
$$

(f) Period

$$
\mathrm{T}=\frac{1}{\mathrm{~F}}=\frac{1}{15.9 \mathrm{MHz}}=6.3 * 10
$$

(g) Wavelength

$$
x=\frac{2^{\prime}}{6}=\frac{2^{\prime}}{0.35}=17.9 \text { meter }
$$

(h) Velocity of propagation

$$
\mathrm{V}=\mathrm{F} * \gamma=15.9 \mathrm{MHz} * 17.9 \mathrm{~m}=2.8 * 10 \mathrm{~m} / \mathrm{s}
$$

(3-3) A sinusoidal current with a peak value of 2 A and a frequency of 50 MHz is traveling in the positive \mathbf{x}-direction with a velocity of $* \quad /$. Determine the following:
(a) Period

$$
\mathrm{T}=\frac{1}{\mathrm{~F}}=\frac{1}{50 \mathrm{MHz}}=2 * 10
$$

(b) Angular Frequency

$$
2^{\prime} * 50 \mathrm{MHz}=314 * 10 \mathrm{rad} / \mathrm{se}
$$

(c) Phase constant

$$
\mathrm{b}=\stackrel{\gamma}{-}=\frac{314 * 10}{2 * 10}=1.57
$$

(d) Wavelength

$$
x=\frac{2^{\prime}}{6}=\frac{2^{\prime}}{1.57}=4 \mathrm{~m}
$$

(e) An equation for the current

$$
=2 \cos (314 * 10-1.57)
$$

(3-4) A sinusoidal voltage with a peak value of 25 V and a radian frequency of $20 \mathrm{Mrad} / \mathrm{s}$ is traveling in the negative $\mathbf{x - d i r e c t i o n ~ w i t h ~ a ~ v e l o c i t y ~ o f ~} *$ / . Determine the following:
(a) Cyclic frequency

$$
\mathrm{F}=\frac{\gamma}{2^{\prime}}=\frac{20 \mathrm{MHz}}{2^{\prime}}=3.18 \mathrm{MHz}
$$

(b) Period

$$
\mathrm{T}=\frac{1}{\mathrm{~F}}=\frac{1}{3.18 \mathrm{MHz}}=3.14 * 10
$$

(c) Phase constant

$$
\mathrm{b}=\frac{\gamma}{-}=\frac{20 * 10}{3 * 10}=0.06
$$

(d) Wavelength

$$
\gamma=\frac{2^{\prime}}{\hbar}=\frac{2^{\prime}}{0.06}=106.67 \mathrm{~m}
$$

(e) An equation for the current

$$
V=25 \cos (20 * 10 t+0.06 x)
$$

(3-5) Consider the current traveling wave of Problem 3-1. Determine the following:
(a) A fixed phasor representation in peak units as either or (You decide which label is appropriate.)

$$
=\mathrm{I} \quad * \quad=8 \angle 0
$$

(b) The corresponding distance-varying phasor () in peak units

$$
\overline{\mathrm{I}} \mathrm{x}=\mathrm{I} * \mathrm{e}^{\mathrm{b}}=8 \mathrm{e} * \mathrm{e} \cdot=8 \angle-0.025 \mathrm{x}
$$

(c) The wave of the distances-varying phasor at $x=100 \mathrm{~m}$.

$$
\overline{\mathrm{I}} 100=8 \angle-0.025100=8 \angle-2.5
$$

(3-6) Consider the voltage traveling wave of Problem 3-2. Determine the following:
(a) A fixed phasor representation in peak units as either or (You decide which label is appropriate.)

$$
=\mathrm{V} \quad * \quad=15 \angle 0
$$

(b) The corresponding distance-varying phasor () in peak units.

$$
V \mathrm{x}=15 \angle 0.35
$$

(c) The wave of the distances-varying phasor at $x=4 \mathbf{m}$

$$
\mathrm{V} 4=15 \angle 0.35 * 4=15 \angle 1.40
$$

(3-7) Repeat the analysis of Problem 3-5 if the current of Problem 3-1 has a fixed phase shift such that it is described by

$$
=\quad(* \quad-\quad . \quad+.)
$$

(a) A fixed phasor representation in peak units as either or (You decide which label is appropriate.)

$$
=\mathrm{I} \quad * \quad=8 \angle 1.5
$$

(b) The corresponding distance-varying phasor () in peak units

$$
\overline{\mathrm{I}} \mathrm{x}=\mathrm{I} * \mathrm{e}^{\mathrm{b}}=(8 \angle 1.5) *(1 \angle-0.025 \mathrm{x})=8 \angle 1.5-0.025 \mathrm{x}
$$

(c) The wave of the distances-varying phasor at $\mathbf{x}=\mathbf{1 0 0} \mathrm{m}$.

$$
\overline{\mathrm{I}} 100=8 \angle 1.5-0.025100=8 \angle-1.0
$$

(3-8) Repeat the analysis of Problem 3-6 if the voltage of Problem 3-2 has a fixed phase shift such that it is described by

$$
=(\quad+\ldots+/)
$$

(a) A fixed phasor representation in peak units as either or (You decide which label is appropriate.)

$$
=\mathrm{V} \quad * \quad=15 \angle \overline{3}
$$

(b) The corresponding distance-varying phasor () in peak units.

$$
V \mathrm{x}=15 \angle \overline{3} * 1 \angle 0.35=15 \angle \overline{3}+0.35
$$

(c) The wave of the distances-varying phasor at $x=4 \mathbf{m}$

$$
\mathrm{V} 4=15 \angle \frac{-}{3}+1.40
$$

(3-9) Redefine the fixed phasor of Problem 3-5 so that the phasor magnitude is expressed in rms units, and determine the average power dissipated in a $50-$ resistance.

$$
\begin{gathered}
\mathrm{I}=\mathrm{I} \quad * 0.707=8 \mathrm{~A} * 0.707=5.66 \mathrm{~A} \\
\mathrm{P}=\mathrm{I} \quad * \mathrm{R}=\left(\begin{array}{l}
5.66 \mathrm{~A}) *(50 \mathrm{q})=1,601.78 \mathrm{~W}
\end{array}\right.
\end{gathered}
$$

(3-10) Redefine the fixed phasor of Problem 3-6 so that the phasor magnitude is expressed in rms units, and determine the average power dissipated in a $75-$ resistance.

$$
\begin{gathered}
\mathrm{V}=\mathrm{V} \quad * 0.707=15 \mathrm{v} * 0.707=10.61 \mathrm{~V} \\
\mathrm{P}=\frac{\mathrm{V}}{}=\frac{10.61 \mathrm{~V}}{75 \mathrm{q}}=1.50 \mathrm{~W}
\end{gathered}
$$

(3-11) Redefine the fixed phasor of Problem 3-7 so that the phasor magnitude is expressed in rms units. Would the power dissipated in a 50- resistance be the same as in Problem 39 ?

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I} \quad * 0.707=8 \mathrm{~A} * 0.707=5.66 \angle 1.5 \mathrm{~A} \\
& \mathrm{P}=\mathrm{I} \quad * \mathrm{R}=\left(\begin{array}{ll}
5.66 & \mathrm{~A}) *(50 \mathrm{q})=1,601.78 \mathrm{~W}
\end{array}\right.
\end{aligned}
$$

Yes they are the same.
(3-12) Redefine the fixed phasor of Problem 3-8 so that the phasor magnitude is expressed in rms units. Would the power dissipated in a 75- resistance be the same as in Problem 310 ?

$$
\begin{gathered}
\mathrm{V}=\mathrm{V} \quad * 0.707=15 \mathrm{v} * 0.707=10.61 \mathrm{~V} \\
\mathrm{P}=\frac{\mathrm{V}}{}=\frac{10.61 \mathrm{~V}}{75 \mathrm{q}}=1.50 \mathrm{~W}
\end{gathered}
$$

Yes they are the same.
(3-13) Under steady-state ac conditions, the forward current wave on a certain lossless 50line is $=\angle$. Determine the voltage forward wave.

$$
=2 \angle 0 \quad *(50 q)=100 \angle 0
$$

(3-14) Under steady-state ac conditions, the forward current wave in 300 lossless line is $=\angle$. Determine the current forward wave.

$$
I=-=\frac{15 \angle 3}{50}=300 \angle 3 \mathrm{~mA}
$$

(3-15) Under steady-state ac conditions, the reverse voltage wave on a lossless 50 line is $=\quad \angle V$. Determine the reverse current wave.

$$
I=--=-\frac{200 \angle 0}{50}=-4 \angle 0 \mathrm{~A}
$$

(3-16) Under steady-state ac conditions, the reverse current wave on a lossless 75- line is $=. \angle$. Determine the reverse voltage wave.

$$
=-\quad * I=(-0.5 \angle 2 \quad * 75 q=-37.5 \angle 0
$$

(3-17) A table of specifications for one version of RG-8/U 50- coaxial cable indicates that the attenuation per $\mathbf{1 0 0} \mathrm{ft}$. at 50 MHz is $\mathbf{1 . 2} \mathrm{dB}$. At this frequency, determine the following:
(a) Attenuation factor in decibel per foot

$$
\frac{1.2 \mathrm{~dB}}{100}=0.012 \mathrm{~dB} / \text { Foot }
$$

(b) Attenuation factor in nepers per foot

$$
\frac{0.012 \mathrm{~dB}}{8.686}=1.382 * 10 \quad \mathrm{~Np} / \mathrm{ft}
$$

For a length of $\mathbf{3 0 0} \mathbf{f t}$. determine the following:
(c) Total attenuation in decibel

$$
\mathrm{L}=\breve{\mathrm{U}} \quad * \mathrm{~d}=0.012 * 300=3.6 \mathrm{~dB}
$$

(d) Total attenuation in nepers

$$
\mathrm{L}=\breve{\mathrm{U}} * \mathrm{~d}=1.3815 * 10 \quad * 300=0.4145 \text { nepers }
$$

(e) / Ratio using both decibels and nepers for a single wave

$$
\frac{V}{V}=e \quad e \quad=0.6607
$$

In terms of decibels, this ratio may be expressed as

$$
\frac{\mathrm{V}}{\mathrm{~V}}=10^{-}=10^{-}=10 \quad=0.6607
$$

(3-18) A transmission line has an attenuation of $0.05 \mathrm{~dB} / \mathrm{m}$. Determine the following:
(a) Attenuation factor in nepers $/ m$

$$
=\frac{}{8.686}=\frac{0.05}{8.686}=5.756 * 10 \quad \mathrm{~Np} / \mathrm{m}
$$

For a length of $\mathbf{4 0 0} \mathrm{m}$, determine the following:
(b) Total attenuation in decibel

$$
\mathrm{L}_{\mathrm{dB}}=\breve{\mathrm{U}}_{\mathrm{dB}} * \mathrm{~d}=0.05 * 400=20 \mathrm{~dB}
$$

(c) Total attenuation

$$
L=\breve{U} * d=5.756 * 10^{3} \quad 400=2.303 \mathrm{~Np}
$$

(d) / Ratio using both decibels and nepers for a single wave

$$
\frac{V_{2}}{V_{1}}=\quad=\quad 2.303=0.1
$$

In term of decibles:

$$
\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=10^{20}=10^{\frac{20}{20}}=10^{1}=0.1
$$

(3-19) A single-Frequency wave is propagating in one direction on a transmission line of length $\mathbf{2 0 0} \mathbf{m}$. with an input rms voltage of 50 V , the output rms voltage is measured as 20 V . Determine the following:
(a) Total attenuation in decibel

$$
\mathrm{L}_{\mathrm{dB}}=20 \log _{10} \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=20 \log _{10} \frac{50}{20}=7.959 \mathrm{~dB}
$$

(b) Total attenuation in nepers

$$
\mathrm{L}=\frac{\mathrm{L}_{\mathrm{dB}}}{8.686}=\frac{7.959}{8.686}=0.9163 \mathrm{~Np}
$$

(c) Attenuation factor in decibel/meter

$$
\check{\mathrm{U}}=\frac{\mathrm{L}_{\mathrm{dB}}}{\mathrm{~d}}=\frac{7.959}{200}=0.03980 \mathrm{~dB} / \mathrm{m}
$$

(d) Attenuation factor

$$
\breve{U}=-=\frac{0.9163}{200}=4.581 * 10^{3} \quad /
$$

(3-20) A single-Frequency wave is propagating in one direction on a transmission line of length 400 m . The input power to the line is 40 W , and the output power is 12 W . Determine the following:
(a) Total attenuation in decibel

$$
\mathrm{L}_{\mathrm{dB}}=20 \log _{10} \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=20 \log _{10} \frac{40}{12}=5.229 \mathrm{~dB}
$$

(b) Total attenuation

$$
\mathrm{L}=\frac{\mathrm{L}_{\mathrm{dB}}}{8.686}=\frac{5.229}{8.686}=0.6020 \mathrm{~Np}
$$

(c) Attenuation factor in decibel/meter

$$
\check{\mathrm{U}}=\frac{\mathrm{L}_{\mathrm{dB}}}{\mathrm{~d}}=\frac{5.229}{400}=0.01307 \mathrm{~dB} / \mathrm{m}
$$

(3-21) A transmission line has the following parameters at $50 \mathrm{MHz}:=. \quad /$, $=/$, $=/$, and $=/$. Determine the following:
(a) Z

$$
\begin{gathered}
=+\gamma \mathrm{L}=0.15+\left(2^{\prime} * 50 \mathrm{MHz} * 1.2 \mu\right) \\
0.15+376.99-\frac{\Omega}{-} \\
377.29 \angle 1.5310-\frac{\Omega}{-}
\end{gathered}
$$

(b) Y

$$
\begin{gathered}
\mathrm{Y}=\mathrm{G}+\gamma \mathrm{C}=4 * 10^{6}+\mathrm{j} 2^{\prime} * 50 \mathrm{MHz} * 10 \mathrm{pC} \\
4 * 10^{6}+\mathrm{j} 3.1416 \times 10^{3} / \\
3.1416 * 10^{3} 1.5695 /
\end{gathered}
$$

(c) ,

$$
\left.\begin{array}{rl}
\mathrm{d} & =\sqrt{\mathrm{ZY}}=\overline{(377.29} 1.5310)\left(3.1416 * 10^{3} \quad 1.5695\right.
\end{array}\right)
$$

$$
\begin{gathered}
\breve{\mathrm{U}}=22.36 \times 10^{-3} \mathrm{~Np} / \mathrm{m} \\
\mathrm{~b}=\mathrm{j} 1.008 \mathrm{rad} / \mathrm{ft}
\end{gathered}
$$

(3-22) A lossy audio-frequency line has the following parameters at $\mathbf{2} \mathbf{k H z}:=. /$, $=$. $/$, $/$, and .Determine the following: (a) Z

$$
\begin{gathered}
=+\gamma \mathrm{L}=0.20+\left(2^{\prime} * 2 \mathrm{KHz} \times 0.1 \mu\right) \\
0.20+1.2566 \underline{\Omega}
\end{gathered}
$$

$$
0.200 \angle 6.283 \quad \underline{\Omega}
$$

(b) Y

$$
\begin{gathered}
\mathrm{Y}=\mathrm{G}+\mathrm{\gamma C}=0+\mathrm{j} 2^{\prime} * 2 \mathrm{KHz} \times 2 \mathrm{pC} \\
0+\mathrm{j} 2.5133 \times 10^{8} / \\
251.33 \times 10^{10} \angle 1.571 /
\end{gathered}
$$

(c) ,

$$
\begin{gathered}
\mathrm{d}=\sqrt{\mathrm{ZY}}=\sqrt{ }\left(0 . 2 0 0 \angle 6 . 2 8 3 \quad \left(251.33 \quad 10^{10} \angle 1.5701\right.\right. \\
=\overline{50.27 \quad 10^{10} \angle 1.58}=70.9 \quad 10^{6} \angle 0.79 \\
=5 \times 10^{-5}+\mathrm{j} 5.029 \times 10^{-5} \\
\check{\mathrm{U}}=5 \times 10^{-5} \mathrm{~Np} / \mathrm{ft} \\
\mathrm{~b}=\mathrm{j} 5.029 \times 10^{-5} \mathrm{rad} / \mathrm{ft}
\end{gathered}
$$

(d) Attenuation in $\mathbf{d B} / \mathrm{ft}$

$$
\breve{U}_{\mathrm{U} B}=8.69 \quad 5 \quad 10^{5}=4.34 \quad 10^{4}-
$$

(e) v

$$
=\frac{-}{\sigma}=\frac{2^{\prime} \times 2 \mathrm{kHz}}{5.029 \quad 10^{5}} 25 \quad 10^{7} \quad /
$$

(f)

$$
\begin{aligned}
& =\frac{0.200 \angle 6.28}{251.3310^{10} \angle 1.571}=\overline{810^{6} \angle-1.57} \\
& =2821 \angle-0.783 \Omega=2001-1989 \Omega
\end{aligned}
$$

(3-23) A coaxial cable has the following parameters at a frequency of 1 MHz :

$$
\begin{aligned}
\text { series resistance } & =0.3 \Omega / \\
\text { series reactance } & =2 \Omega / \\
\text { shunt conductance } & =0.5 \mathrm{uS} / \mathrm{m} \\
\text { shunt susceptance } & =0.6 \mathrm{mS} / \mathrm{m}
\end{aligned}
$$

Determine the following:

$$
\begin{aligned}
& \mathrm{Z}=0.3+\mathrm{j} 2 \hat{\mathrm{Y}} / \mathrm{m}=2.022 \angle 1.419 \Omega / \\
& \mathrm{Y}=0.5 \mu+\mathrm{j} 0.6 \mathrm{~m} \quad \mathrm{~S} / \mathrm{m}=0.6 \mathrm{~m} \angle 1.57-
\end{aligned}
$$

(a)

$$
\begin{gathered}
d=\sqrt{\mathrm{ZY}}=\sqrt{ }(2.02 \angle 1.422)(0.6 \angle 1.570 \\
=\sqrt{1.213 \angle 3}=0.0348 \angle 1.5=2.6 \mathrm{~m}+\mathrm{j} 0.035 \\
\check{\mathrm{U}}=2.6 \mathrm{~m} \mathrm{~Np} / \mathrm{m} \\
=0.0348 \mathrm{rad} / \mathrm{m}
\end{gathered}
$$

(b) Attenuation in $\mathrm{dB} / \mathrm{ft}$

$$
\breve{U}_{\mathrm{UB}}=8.69 \quad 2.6 \mathrm{~m}=0.02263 \mathrm{~dB} / \mathrm{m}
$$

(c) V

$$
\mathrm{v}=\frac{\gamma}{\overline{6}}=\frac{2^{\prime} \times 1 \mathrm{MHz}}{0.0348}=18.1 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

(d)

$$
\begin{aligned}
=-= & \frac{2.02 \angle 1.4219}{0.6 \angle 1.57}=\sqrt{3.37 \angle-0.148} \\
& 58.06 \angle-0.074 \Omega=57.9-4.3 \Omega
\end{aligned}
$$

(3-24) For the coaxial cable of problem 3-23, repeat the analysis at 100 MHz if the series resistance increases to 1 / , but the shunt conductance remains essentially the same. (Note: You must apply basic ac circuit theory to determine the new values for the reactance and susceptance.)

$$
\begin{gathered}
\text { 1. } \mathrm{L}=\frac{\mathrm{X}}{\gamma}=\frac{2}{2^{\prime} \times 1 \mathrm{MHz}}=0.32 \mu / \\
=\frac{\delta}{-}=\frac{0.6}{2^{\prime} \times 1 \mathrm{MHz}}=95.5 \quad / \\
=+\quad=1+2^{\prime} \times 10^{8} \quad 0.312 \quad 10^{6} \Omega / \\
1+\mathrm{j} 200=200 \angle 1.57 \mathrm{Y} / \mathrm{m} \\
\mathrm{Y}=\mathrm{G}+\mathrm{jB}=0.5 \times 10^{-6}+2^{\prime} \times 10^{8} \quad 95.5 \quad 10^{12} \\
=0.5 \times 10^{-6}+\mathrm{j} 0.06=0.06 \angle 1.571 \quad \mathrm{~S} / \mathrm{m}
\end{gathered}
$$

a. $\quad{ }^{d}=\sqrt{Z Y}=\sqrt{ }(200 \angle 1.57)(0.06 \angle 1.571$

$$
\begin{aligned}
& =\sqrt{12} \angle 3.137=3.46 \angle 1.57 \\
& =8.3 \mathrm{~m}+\mathrm{j} 3.46
\end{aligned}
$$

$\breve{\mathrm{U}}=8.3 \mathrm{~m} \mathrm{~Np} / \mathrm{m}$
$0=3.46 \mathrm{rad} / \mathrm{m}$
b. $\quad \breve{U}_{\mathrm{UB}}=8.69 \times 8.3 \times 10^{-3}=0.072 \mathrm{~dB} / \mathrm{m}$
c. $\quad=\frac{\sigma^{\circ}}{}=\frac{2^{\prime} \times 100 \mathrm{MHz}}{3.46}=1.814 \quad 10^{8} \mathrm{~m} / \mathrm{s}$
d. $=-=\frac{200 \angle 1.57}{0.06 \angle 1.571}=\sqrt{3.33 \angle-0.0048}$

$$
=57.74 \angle-0.0024 \hat{Y}=57.74 \text { ï j0.139 }
$$

(3-25) For the circuit of fig. P3-25, determine the following:
(a) Input current

$$
\begin{aligned}
\mathrm{I}= & \frac{\mathrm{E}}{\mathrm{Z} 1+\mathrm{Zo}}=\frac{50 \angle 0}{300+290-60}=\frac{50 \angle 0}{590-60} \\
& =\frac{50 \angle 0}{593 \angle-0.1011}=84.31 \angle 0.1013 \mathrm{~mA}
\end{aligned}
$$

(b) Input Voltage

$$
\begin{gathered}
1=*_{1}=290-60 *(0.84 \angle 0.101 \\
=(296.14 \angle-0.204) 0.084 \angle 0.101)=24.97 \angle-0.103 \mathrm{~V}
\end{gathered}
$$

(c) Input power

$$
I_{1}=I_{1}^{2} *=0.084^{2} * 290=2.06
$$

(d) Load current

$$
2=0.084 \angle 0.101 *\left(\quad^{1.5}\right) 1 \angle-0.6=0.019 \angle-0.5
$$

(e) Load Voltage

$$
2=\left(24.97 \angle\left(^{1.5}\right) 1 \angle-0.6=5.57 \angle-0.703 \mathrm{~V}\right.
$$

(f) Load Power

$$
2_{2}=2^{2} *=0.019^{2} * 290=0.103
$$

(g) Line loss in dB

$$
=10 \log 10 \frac{1}{2}=10 \quad 10 \frac{2.026}{0.103}=13.03 \mathrm{~dB}
$$

(3-26) For the circuit of fig. P3-26, determine the following:
(a) Input current

$$
=\frac{80 \angle 0}{1+}=\frac{80 \angle 0}{600+100+(600+100)}=\frac{80}{1200-200}
$$

(b) Input Voltage

$$
\begin{aligned}
\mathrm{Zo} & =\mathrm{Ro}+\mathrm{jXo}=600+\mathrm{j} 100=608.28 \angle 0.165 \dot{Y} \\
1 & =\mathrm{Zo}_{1}=(608.28 \angle 0.1652)(0.0658 \angle-0.1652)=40 \angle 0 \mathrm{~V}
\end{aligned}
$$

(c) Input power

$$
{ }_{1}=1^{2} * \mathrm{Ro}=0.066^{2} \times 600=2.59 \mathrm{~W}
$$

(d) Load current

$$
\begin{gathered}
=\frac{24}{8.69}=\frac{24}{8.69}=2.76 \mathrm{~Np} \\
I=(0.066 \angle-0.165)\left({ }^{2.763}\right)(1 \angle-3)=4.150 \quad 10^{\wedge}-3 \angle-3.165
\end{gathered}
$$

