The following lecture schedule contains links to the book sections from Biology from OpenStax College (CC-BY 4.0) Readings are organized into 4 units that cover the material for the 4 exams in the course.

- **Unit 1**
- **Unit 2**
- **Unit 3**
- **Unit 4**

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Topic with link to Openstax pages</th>
<th>Openlab Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BASICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to the Course</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Definition, Characteristics and Hierarchy of Life</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scope of Ecology: Habitat, Population, Community, Ecosystem</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1.</td>
<td>The Scientific Method</td>
<td>Biology Basics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evolution and Classification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systematics, taxonomy, phylogeny</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THE ORIGIN & EVOLUTION OF LIFE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Darwin & Evolution</td>
<td>Evolution and Geological Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Origin of Life</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Geological Time Scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellular History</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kingdoms and Domains</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INORGANIC CHEMISTRY I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Definition, Classification and Properties of Matter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atomic Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The periodic Table</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3.</td>
<td>Isotopes</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrons and Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Reactions: Exergonic and endergonic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activation Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxidation and Reduction</td>
<td></td>
</tr>
</tbody>
</table>
INORGANIC CHEMISTRY II
4. Elements, Compounds, Molecules and Mixtures
 Bonds: Weak and Strong

WATER & pH
III 5. Importance and Properties of H₂O
 Acids, Bases, pH, Buffers

ORGANIC CHEMISTRY
6. Importance of Carbon
 Organic vs. Inorganic Compounds
 The Hydrocarbons
 Functional Groups
 Isomers

EXAMINATION I (Lectures 1-6 inclusive)

MACROMOLECULES I
8. Monomers and Polymers
 Dehydration Synthesis and Hydrolysis
 Carbohydrates
 Lipids

MACROMOLECULES II
9. Proteins
 Nucleic Acids
 ATP
 Enzymes and Metabolic Pathways

CELLS
10. The Cell Theory
 Methods of Studying Cells
 Cellular Size Limitations
 Cell Composition
 Prokaryotic and Eukaryotic Cells
 Cellular Evolution
 Anaerobic and Aerobic Cells; Endosymbiosis;
 Multicellularity; Viruses, Bacteria and Archaea
VI 11. THE EUKARYOTIC CELL
 Eukaryotic Cell Structure and Function
 Eukaryotes

 MEMBRANES & TRANSPORT
 Membrane Structure and Function
 Membranes

 12. Passive Transport Processes
 Active Transport Processes
 Cell Surface Modifications

VII 13. Examination II (Lectures 8-12 inclusive)

 ENERGY
 Cells and the Flow of Energy
 Energy

 14. Metabolic Reactions and Energy Transformations
 Metabolic Pathways
 Oxidation and Reduction

VIII 15. CELLULAR RESPIRATION I
 Cellular Respiration (Anaerobic)
 Glycolysis and Fermentation

 Outside the Mitochondria: Glycolysis
 Fermentation

 CELLULAR RESPIRATION II
 Cellular Respiration (Aerobic)
 Aerobic Respiration

 Inside the Mitochondria:
 The Preparatory Reaction (Hub)
 Citric Acid Cycle (TCA)
 Electron Transport Chain (ETC)
 Metabolic Pool

IX 17. PHOTOSYNTHESIS I
 Photosynthetic Organisms
 Light Capture

 The Process of Photosynthesis
 Plant as Solar Energy Converters: Light Reactions

PHOTOSYNTHESIS II

 18. Dark Reactions: Calvin Cycle Reactions (Carbon Fixation)
 Other Types of Photosynthesis
 Carbon Fixation
ASEXUAL REPRODUCTION
The Cell Cycle and Its Control
Mitosis and Cytokinesis
The Cell Cycle and Cancer
Prokaryotic Cell Division

SEXUAL REPRODUCTION
Halving the Chromosome Number
Genetic Variation
20. The Phases of Meiosis
Comparison of Meiosis and Mitosis
The Human Life Cycle (Spermatogenesis & Oogenesis)

CHROMOSOMES
Changes in Chromosome Number and Structure

Examination III (Lectures 14-21 inclusive)

GENETICS I
Gregor Mendel
Mendel’s Law
Human Genetics Disorders

GENETICS II
Extending the Range of Mendelian Genetics
Multiple Allelic Traits
Incomplete Dominance
Pleiotropy
Polygenic Inheritance
X-Linked Inheritance
Environmental Influences

DNA
The Genetic Material

DNA Structure
DNA Replication
Prokaryotic versus Eukaryotic Replication
GENE FUNCTION
The Genetic Code
Transcription
Translation
Structure of the Eukaryotic Chromosome

GENETIC REGULATION
Prokaryotic
Eukaryotic
Regulation Through Mutations

BIOTECHNOLOGY & GENOMICS
DNA Cloning
Biotechnology Products
Gene Therapy
Genomics

ANIMAL DEVELOPMENT
Early Developmental Stages
Developmental Processes
Human Embryonic and Fetal Development

Examination IV (Lectures 23-29 inclusive)