# MAT1575 Module 8 - Estimating function values using Taylor polynomials. 

## Objectives: .

1. Let $f(x)$ be a function with $n$ derivatives that exist at $x=c$. Give a formula for the Taylor polynomial of degree $n$ of $f(x)$ centered at $x=c$.
2. Compute the Taylor polynomials $p_{2}(x), p_{3}(x)$, and $p_{4}(x)$ for $f(x)=e^{x}$ centered at $x=0$.
3. Use your results to find a general formula for $p_{n}(x)$ (the $n$th degree Taylor polynomial approximation of $e^{x}$ at $x=0$ ).
4. Implement the Taylor polynomial above as python function of two variables ( $x$ and $n$ ). Compare your numerical results for different values of $x$ and $n$ with the built-in python functions. You can find a basic skeleton of the program here: https://trinket.io/python/d02151a7ce What happens to your approximation as $x$ gets larger? What can you do to increase the accuracy of your function for large $x$ ?
