Name: \qquad Points: \qquad
Exercise 1. Sketch the graph of $f(x)=\frac{1}{2}(x-1)(x+2)^{2}$ using your calculator or Desmos.
(a) Circle the zeros on the graph.
(b) How do you recognize the zeros in the formula?
(c) What is the remainder if you divide $f(x)$ by $x-1$ or by $x+2$ (Hint: do not use long division)?
(d) What does the graph look like near each zero? Can you recognize why this is by looking at the formula?
(e) Consider the function $g(x)=-\frac{1}{2}(x-1)(x+2)^{2}$. What does the graph look like compared to the graph of f ? Check by using your calculator or Desmos.

Exercise 2. Sketch the graph of the function $f(x)=\frac{1}{10}(x-1)^{2}(x+2)^{2}$
(a) What does the graph look like near each zero? Can you recognize this in the formula?

Exercise 3. Sketch the graph of the function $f(x)=\frac{1}{10}(x-1)^{2}(x+2)^{3}$
(a) What does the graph look like near each zero? Can you recognize this in the formula?

Exercise 4. Consider (but do not graph it (yet)) $f(x)=\frac{1}{100}(x-1)^{2}(x+2)^{3}(x-2)^{2}$
(a) Locate the zeros on the graph (draw that here). Also place the point $(0, f(0))$ on the graph.
(b) What does the graph look like near each zero?
(c) What is the remainder if you divide by $x-a$ where $f(a)=0$ (Hint: Let a be each zero in turn and do not use long division).
(d) Sketch the graph of f by constructing a graph that has only these characteristics near each zero and passes through $(0, f(0))$.
(e) Check your answer by using a calculator or Desmos.

Exercise 5. Summarize your conclusions.

