MODULE 4.5

ROOTS AND GRAPHS OF POLYNOMIALS- PRELUDE

Name:_

___ Points:_____

Exercise 1. Sketch the graph of $f(x) = \frac{1}{2}(x-1)(x+2)^2$ using your calculator or Desmos.

- (a) Circle the zeros on the graph.
- (b) How do you recognize the zeros in the formula?
- (c) What is the remainder if you divide f(x) by x 1 or by x + 2 (Hint: do not use long division)?
- (d) What does the graph look like near each zero? Can you recognize why this is by looking at the formula?
- (e) Consider the function $g(x) = -\frac{1}{2}(x-1)(x+2)^2$. What does the graph look like compared to the graph of f? Check by using your calculator or Desmos.

Exercise 2. Sketch the graph of the function $f(x) = \frac{1}{10}(x-1)^2(x+2)^2$

(a) What does the graph look like near each zero? Can you recognize this in the formula?

Exercise 3. Sketch the graph of the function $f(x) = \frac{1}{10}(x-1)^2(x+2)^3$

(a) What does the graph look like near each zero? Can you recognize this in the formula?

Exercise 4. Consider (but do not graph it (yet)) $f(x) = \frac{1}{100}(x-1)^2(x+2)^3(x-2)^2$

- (a) Locate the zeros on the graph (draw that here). Also place the point (0, f(0)) on the graph.
- (b) What does the graph look like near each zero?
- (c) What is the remainder if you divide by x a where f(a) = 0 (Hint: Let a be each zero in turn and do not use long division).
- (d) Sketch the graph of f by constructing a graph that has only these characteristics near each zero and passes through (0, f(0)).
- (e) Check your answer by using a calculator or Desmos.

Exercise 5. Summarize your conclusions.