MODULE 12

Name: Points: \qquad
Exercise 1. Find the sum.
(a) $\quad \sum_{k=1}^{5}\left(k^{2}+2 k\right)=$
(b) For the sequence $a_{1}, a_{2}, a_{3}, \ldots$ given by $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$ find $\sum_{n=3}^{6} a_{n}=$
(c) For the geometric sequence given by $6,12,24,48, \ldots$ find $\sum_{i=1}^{15} a_{i}=$
(d) For the arithmetic sequence given by $-13,-16,-19,-22, \ldots$ find $\sum_{k=1}^{2345} a_{k}=$
(e) For the geometric sequence given by $-6,2,-\frac{2}{3}, \frac{2}{9}, \ldots$ find $\sum_{n=1}^{\infty} a_{n}=$
(f) For the arithmetic sequence given by $2,4,6,8,10, \ldots$ find $\sum_{k=1}^{\infty} a_{k}=$

Exercise 2. Suppose you have a loan of $\$ 1000$ with an annual interest rate of 4%.
(a) If you pay $\$ 70$ each month what is the principal after n months? (Hint: what is the principle after 1 month? 2 months? 3 months? Don't over simplify and notice the pattern. Then use the formula for the geometric series to give a closed formula).
(b) How long does it take to pay off?
(c) (Optional) How much would you have to pay a month to pay it off in 3 years?

