Name: \qquad

1. Properties of Exponents

Multiplication/Product Rule	$x^{m} \cdot x^{n}=$	
Division/Quotient Rule	$\frac{x^{m}}{x^{n}}=$	where $(x \neq 0)$
Zero Exponent	$x^{0}=$	where $(x \neq 0)$
Power of a Power	$\left(x^{m}\right)^{n}=$	
Power of a Product	$(x \cdot y)^{n}=$	
Power of a Quotient	$\left(\frac{x}{y}\right)^{n}=$	where $(y \neq 0)$
Negative Exponent	$x^{-n}=$	where $(x \neq 0)$

Points: \qquad

Schwartzman (1994) defines
Exponent: "From the Latin ex, meaning 'away, out' and ponent, the present participle stem of the word ponere meaning 'to put or to place.' When something is exposed it is "put out" so it can be seen. Similarly, in mathematical notation the exponent is the small number or letter that is "put out" to the right and above the base when that base is being raised to a power, also called a "superscript." An exponent is therefore named after its physical appearance in writing rather than its mathematical significance."
a. Simplify
$\left(3 x^{3} y^{2}\right)\left(4 x^{2} y^{5}\right)$
b. Simplify
$\left(m m^{2}\right)^{3}\left(2 m^{-7} n^{6}\right)^{5}$
Instead of writing out long multiplication of the same number, for example, $2 \times 2 \times 2$, a symbolic representation of this idea was developed, so that $a \times a \times a=a^{3}$. Rene Descartes introduced this idea in 1637 in his book "La Geometrie," so that any value multiplied by itself a certain number of times could be represented as a^{2}, a^{3}, or a^{4}. Descartes was both a philosopher and a mathematician, and is famous for, among other things, the line, Cogito, ergo sum, which in English is I think, therefore I am.

Schwartzman (1994) defines
Power: "From old French word poier, from the Vulgar Latin potere a variant of classic Latin posse meaning 'to be able.' The Indo-European root is poti, meaning 'powerful [as in]: Lord.' If one is able to do many things one is considered powerful. A powerful person typically has a large number of possessions (a word derived from 'posse') and a large amount of money. In algebra when even a small number like 2 (two) is multiplied by itself a number of times, the result becomes very large quickly; metaphorically speaking, the result is powerful. If the term 'power' is used precisely, it refers to the result of multiplying a number by itself a certain number of times."
c. Simplify
$\left(\frac{1}{9}\right)^{-1}+\left(-\frac{2}{3}\right)^{2}-\left(\frac{3}{6}\right)^{0}$
d. Simplify

$$
\left(\frac{7 x^{3} y^{-4}}{x^{-3} y^{9}}\right)^{3}
$$

e. Simplify $\left(\frac{6 a^{4} b^{6}}{a^{2} b^{5} c}\right)^{3}$

The first known reasoning behind mathematical exponents started with the Egyptians of the Middle Empire, 2040-1630 B.C. (Cajori, 2007). The ancient symbol for squaring a number was found in a hieratic Egyptian papyrus of that period. In part of the ancient Papyrus containing the computation of the volume of a pyramid of a square base occurs a hieratic term containing a pair of walking legs (see Figure 1) signifying "make in going," which means squaring the number.
Figure 1

References:

Cajori, F. (2007). A history of mathematical notations. Volume 1, 2, 335-339. Chicago, IL: Open Court Publishing Co.
Swartzman, S. (1994). The words of mathematics: An etymological dictionary of mathematical terms used in English. USA: The Mathematical Association of America.

