MAT1575 Module 9 – An algorithm for computing Riemann sums.

Objectives: Construct an algorithm for approximating definite integrals using Riemann sums.

- 1. Divide the interval [a, b] into n equal parts. Construct a formula for Δx , which is the width of each subdivision.
- 2. Let $x_0 = a, x_1, x_2, \dots x_{n-1}$ represent the left endpoint of each subdivision from question 1. Write a formula for x_i in terms of a, i, and Δx . (See Figure 1.) (Hint: The formula is an arithmetic progression.)

Figure 1: Dividing the interval [a, b] into n equal-sized parts.

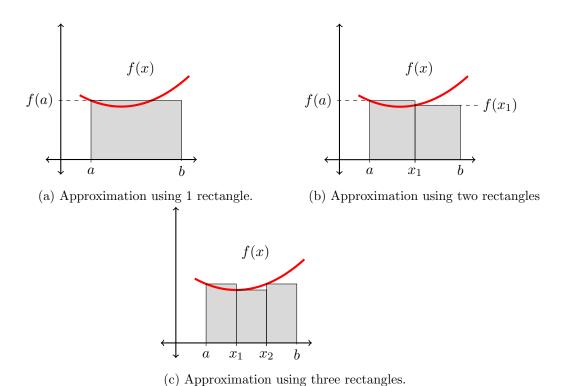


Figure 2: Riemann sum approximations for the area under the curve (using left endpoints).

- 3. Using Figure 2 and your answers to questions 1 and 2, estimate the value of $\int_a^b f(x) dx$ as a sum of the area of n rectangles.
- 4. How does your approximation in question 3 compare to the true value of $\int_a^b f(x) dx$ as n increases?
- 5. Implement your algorithm in python using trinket.io.
- 6. Test your algorithm against the following examples:
 - (a) Approximate the area under $f(x) = x^2 1$ from x = 3 to x = 5.
 - (b) Approximate the area under $f(x) = \cos(x)$ from x = 0 to $x = \frac{\pi}{2}$.
 - (c) Approximate the area under $f(x) = 3e^x$ from x = 2 to x = 6.
 - (d) Compute $f(x) = \int_0^x \sin(t^2) dt$ for different values of x.
 - (e) Approximate the value of $\int_{-\infty}^{\infty} e^{-\frac{1}{2}t^2} dt$.