MAT1575 Module 7 - Alternating series.

Objectives: Approximate the value of π using an alternating series.

1. State the Alternating Series Test.
2. Consider the alternating series

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}=a_{0}-a_{1}+a_{2}-a_{3}+\cdots
$$

where the a_{n} 's are positive, DECREASING, and $\lim _{n \rightarrow \infty} a_{n}=0$. We can write the alternating sum as

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}=\sum_{n=0}^{2 k}(-1)^{n} a_{n}+\left(a_{2 k+1}-a_{2 k+2}\right)+\left(a_{2 k+3}-a_{2 k+4}\right)+\cdots
$$

where $2 k$ is an even number. Are the terms in parenthesis ever positive? Use this idea to show that the sum of the alternating series terms from $n=0$ to $n=2 k+1$ differs (in absolute value) from the true value of the alternating series by at most $a_{2 k+2}$. (Hint: Throw away all the terms after than $a_{2 k+2}$ using an inequality involving 0 .)
3. Repeat the above argument with the finite sum from $n=0$ to $n=2 k-1$ (instead of $2 k$) to show that the sum of the alternating series terms from $n=0$ to $n=2 k$ differs (in absolute value) from the true value of the alternating series by at most $a_{2 k+1}$.
4. The answers to questions 2 and 3 show that

$$
\left|\sum_{n=0}^{\infty}(-1)^{n} a_{n}-\sum_{n=0}^{M}(-1)^{n} a_{n}\right| \leq \longrightarrow ?
$$

5. Use your answer to question 4 together with the known identity:

$$
\pi=\sqrt{12} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}(2 n+1)}
$$

to approximate π (with an error estimate) to 5 decimal places using python. A basic skeleton of the algorithm appears here: https://trinket.io/python/cb1db188eb (Hint: If you want to add the first 10 terms together, then your M value must be 9 in question 4, be careful with your index values.)
6. What is the smallest number of terms do you need to sum to approximate π to 11 decimal places? DO NOT GUESS, use the work above to guarantee that your answer is right!

