MAT1575 Module 6 - Comparing improper integrals and series.

Objectives: Construct an algorithm for estimating the value of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ when $p>1$. Implement the algorithm in python using trinket.io.

1. Write the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, where $p>1$, as a sum from $n=1$ to $n=M$ plus a sum from $n=M+1$ to infinity.

Figure 1: Bounding a sum in terms of an integral.
2. Compute a formula for the area of the shaded rectangle in Figure 1 a and a formula (as an integral) for the area under the curve from a to $a+1$. Which value is larger?
3. Compute a formula for the area of the shaded rectangle in Figure 1 b and a formula (as an integral) for the area under the curve from $a-1$ to a. Which value is larger?
4. Use your answer to question 2 to write a lower bound for $\sum_{n=M+1}^{\infty} \frac{1}{n^{p}}$ using an improper integral. Be careful with the bounds of integration!
5. Use your answer to question 3 to write a upper bound for $\sum_{n=M+1}^{\infty} \frac{1}{n^{p}}$ using an improper integral. Be careful with the bounds of integration!
6. Use your answers to questions 1,4 , and 5 to write lower and upper bounds for $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ in terms of a finite sum from $n=1$ to $n=M$ plus an improper integral.
7. Implement your algorithm in python using trinket.io. A basic skeleton of the algorithm appears here: https://trinket.io/library/trinkets/6fdf7b72ba (Hint: You might want to revisit your code from Module 4.)
8. Test your algorithm against the following examples:
(a) Verify by approximation that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ using $M=10,20,50$.
(b) Verify by approximation that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$ using $M=10,20,50$.
(c) Verify by approximation that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1.2020569031 \ldots$ using $M=10,20,50$.

