MAT1575 Module 3 - An algorithm for applying the Fundamental Theorem of Calculus, Part 2.

Objectives: Construct an algorithm for computing $\int_{a}^{b} f(x) d x$ for any polynomial. Implement the algorithm in python using trinket.io.

1. State the Fundamental Theorem of Calculus, Part 2.
2. State the integral power rule for x^{n} where n is a nonnegative integer.
3. Compute $\int_{a}^{b} x^{n} d x$ in terms of a, b and n.
4. Construct an algorithm for computing $\int_{a}^{b} f(x) d x$ for any polynomial $f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+$ $\cdots+a_{1} x+a_{0}$ using your answers to questions 2 and 3. (Hint: Think about a for loop that applies your results from questions 2 and 3 to every monomial term in the polynomial.)
5. Implement your algorithm in python using trinket.io. A basic skeleton of the algorithm appears here: https://trinket.io/python/44ee93dd37
6. Test your algorithm against the following examples:
(a) Compute the area under $f(x)=3 x^{3}+x^{2}+x+5$ from $x=2$ to $x=7$.
(b) Compute the area under $f(x)=-2 x^{4}+4 x-9$ from $x=-2$ to $x=3$.
(c) Compute the area under $f(x)=\frac{2}{3} x^{2}+3 x$ from $x=0$ to $x=2$.
(d) Compute the area under $f(x)=8 x^{2}-4$ from $x=-1$ to $x=1$.
