# [MODULE 5: PRODUCT, QUOTIENT, RATES OF CHANGES, AND HIGHER DERIVATIVES ALL IN A MIX] 

Name: $\qquad$ Points: $\qquad$

1. Reading assignment: For a practical application of the product rule of derivatives see the following link. Computing the speed of model rockets with the product rule. https://en.wikibooks.org/wiki/Calculus/Product_and_Quotient_Rules
2. State and use the Product Rule to calculate the derivative
$\left.\frac{d f}{d x}\right|_{x=9}, f(x)=\left(x^{\sqrt{2}}-\sqrt{x}+1\right)\left(x^{-2}-3 x-1\right)$
3. State and use the Quotient Rule to calculate the derivative $\left.\frac{d f}{d x}\right|_{x=1}, f(x)=\frac{5 x^{2}-\sqrt{x}-2}{4 x^{3}+1}$
4. Find the rate of change of the Volume $V$ of a cylinder with respect to its radius if the height is twice the radius.
5. Find the rate of change of the fifth root $\sqrt[5]{x}$ with respect $x$ when $x=1,32$ and 243 .

## [MODULE 5: PRODUCT, QUOTIENT, RATES OF CHANGES, AND HIGHER DERIVATIVES ALL IN A MIX]

6. Find the $n$-th derivative of the function $f(x)=x^{k}$, for the following three cases: $k<n, k=n$ and $k>n$. Assume that $k$ is a positive integer. The answers for the three cases are: $0, n!$ and $\frac{k!}{(k-n)!} x^{k-n}$ respectively. It is best if you pick appropriate values for $n$ and $k$ to see each case.
