Department of Architectural Technology

Fall 2018

ARCH 1231 BUILDING TECHNOLOGY I

Exterior Wall Assembly + Performance Analysis Assignment

Description: Interior space requires a level of control over the quality and condition of the environment including temperature, humidity, moisture, air quality, airflow, lighting, and acoustic properties. The control of the interior environment starts with the building envelope. The building envelope is a system of assembled elements and spaces that work together to regulate the relationship between the interior environment and the exterior environment. The performance of the building envelope can be studied and measured to ensure it is providing the designed regulation of environmental elements.

This assignment focuses on the design of the exterior wall assembly for the case study building, utilizing masonry as the primary material. Each student will develop a system for the exterior wall, document it in two and three dimensions, annotate its components and their role in the assembly, and then analyze the performance of the system.

Assignment Context: This assignment introduces building assemblies and performance analysis that will be developed and enhanced in the Building Technology courses that continue the sequence.

Prerequisites: Understanding of three-dimensional projection and material properties and modules, completion of the required readings.

Recommended Text:

Ching, Francis. Architecture Graphics. John Wiley and Sons, 2009.

Suggested Reference: See the City Tech Openlab for additional reference materials.

Plagiarism: Student work submitted must be original and developed individually. Tracing is not acceptable. All construction lines and notations during drawing construction are to remain visible at final submission. Drawings without construction lines (guidelines) will be downgrading significantly.

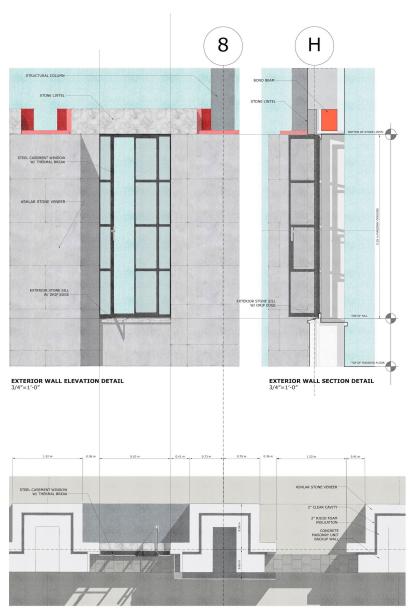
Assignment Specific Learning Outcomes / Assessment Method				
Learning Outcomes	Assessment Methods			
Upon successful completion of this assignment the student shall be able to:	To evaluate the students' achievement of the learning objectives, the professor will do the following:			
Develop coordinated, accurate, and consistent set of two and three-dimensional drawings documenting the exterior wall assembly.	Review student drawing set for consistency, orthographic projection and coordination between drawings, and dimensional accuracy.			
Understand some of the basic principles used in the appropriate selection of interior and exterior construction materials, finishes, products, components, and assemblies based on their inherent performance, including environmental impact and reuse.	Review student notebooks and drawing set submission for proper application of material properties, rules of thumb, and performance analysis.			
Understand and apply basic principles of performance analysis.	Review student performance analysis diagram for application of conventions and accuracy of analysis.			

Course Coordinator: Prof. Jason Montgomery, NCARB LEED AP

Grading Rubric

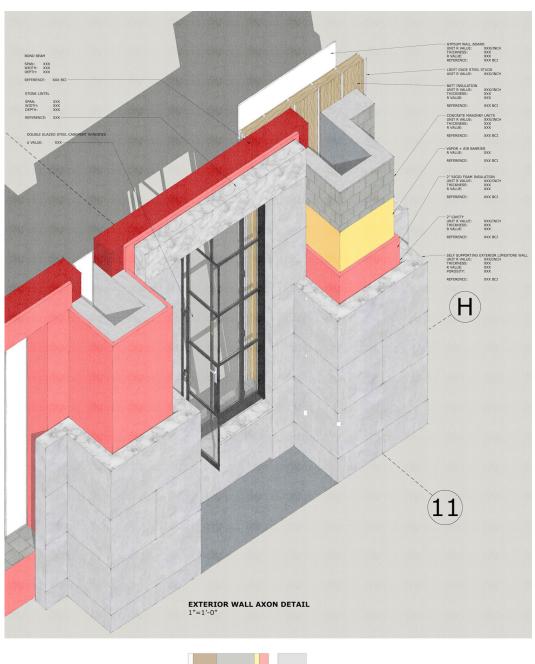
Student Name:

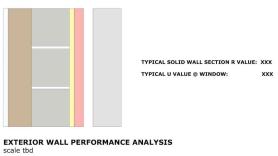
	Approaching Benchmark	Benchmark	Approaching Capstone	Capstone
Lineweight Distinguishing elements especially cut lines (poche), grid lines, transparent elements, finishes	Lines are consistent thickness and quality, in the correct alignment	In addition, two line weights are distinguishable, including cut line	In addition, three or more line weights are distinguishable, including some finish textures	In addition, transparency is clear, centerlines, grid lines, dimension lines are shown w/ correct line type and line weight.
Drawing Organization and Accuracy Setting out of grid and the relationship of elements to the grid is accurate	Structural Grid is established	In addition, structural grid is dimensioned accurately and labeled correctly	In addition, major elements (walls, columns) are accurately placed in relation to the structural grid	In addition, all drawing elements are carefully located in relationship to centerlines and the structural grid
Construction / Guidelines Guidelines and constructions were utilized in the careful construction of each drawing	Guidelines are used for overall geometry of drawings	In addition, guidelines indicate orthographic projection for 3-d vignette construction.	In addition, guidelines indicate geometric center of spaces, perimeters of spaces, and grid locations of key elements	In addition, guidelines are accurate, working off of grid lines and centerlines to each major element and guiding alignments.
The exterior envelope system is developed based on principles of exterior wall assembly.	General configuration of exterior wall and assembly is depicted	In addition, masonry modules and coursing is accurate	In addition, insulation and vapor barriers are correctly positioned	In addition, all elements of the assembly are properly labeled and annotated
Performance Analysis	Performance Analysis diagram is depicted	In addition, Thermal and Moisture Resistance is diagrammed correctly	In addition, unit and total R values for each element are listed and calculated based on thickness with reference provided	In addition, Total R value is calculated accurately and dew point is diagrammed correctly.
Drawing Conventions + Coordination Standard methods of drawing and documentation of key data and elements are utilized and coordinated	Drawings are properly scaled and provided with a title including course #, student name, professor name, semester + year	In addition, detail drawings are referenced to each other using cut lines and tags	In addition, drawings are organized on sheet to ensure proper projection from plan to elevation to section detail	In addition, drawings are consistent and coordinated and indicate clear understanding of drawing types and layers of information


Course Coordinator: Prof. Jason Montgomery, NCARB LEED AP

Assignment Schedule: See syllabus Deliverables:

1.	Plan Detail	Sheet Size: 22"x 34"	Scale: 3/4"=1'-0"
2.	Section Detail	Sheet Size: 22"x 34"	Scale: 3/4"=1'-0"
3.	Elevation Detail	Sheet Size: 22"x 34"	Scale: 3/4"=1'-0"
4.	Axon Detail	Sheet Size: 22"x 34"	Scale: 1"=1'-0"
5.	Performance Analysis	Sheet Size: 22"x 34"	Scale: tbd


Extra Credit:


6. Annotated Digital Model of Axon Sheet Size: 22"x 34" Scale: 1"=1'-0" 20 points

EXTERIOR WALL PLAN DETAIL 3/4"=1'-0"

Mockup of Exterior Wall Detailed Plan, Elevation, and Section

Mockup of Exterior Wall Axon w/ Performance Analysis