Tony Aguirre’s Profile

Student
Active 9 years, 4 months ago
Tony Aguirre
Display Name
Tony Aguirre
Major Program of Study
Mathematics
Academic interests

Applied Mathematics, Electrical Engineering, Remote Sensing

Bio

I’m originally from Texas but now I am living in Brooklyn and currently enrolled in the Applied Mathematics Bachelors degree program at NYCCT. I currently hold an A.A.S from the Electrical Engineering Technology department and I have one semesters left to get a B.S. degree in Applied Mathematics. I am working to become an integral member of an organization of scientists whos objectives are all or some of the following : priority objectives in sensor development, electronics, and remote sensing with applications in astronomy, atmospheric sciences, and/or defense/secuirty technologies.

My efforts thus far, in becoming an integral member of such an organization, have involved : completing an A.A.S in Electrical Engineering Technology with Honors, which focused on circuit analysis methods, circuit designing techniques, and construction of projects on various test beds; working on solid foundation in mathematics by pursuing a B.S in Appiled Mathematics with honors; and also, expanding and utilizing my skills/knowledge by participating in internships annually. To date, I have successfully participated in reputable research programs at The Department Of Energy – Brookhaven National Laboratory, NASA – Goddard Space Flight Center, and NASA – Glenn Research Center

LinkedIn
www.linkedin.com/pub/tony-a/3b/2ab/952/

My Courses

Remote Sensing

Remote Sensing

Highlights the physical and mathematical principles underlying remote sensing techniques, covering the radiative transfer equation,atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. The lab component introduces remote sensing software HYDRA, and MATLAB, used for image display and data analysis.

LIB1201 Research & Documentation for the Information Age D950

LIB1201 Research & Documentation for the Information Age D950

This course explores research and documentation for all media formats including text, images, sound, and multimedia. Students will explore information issues, especially in terms of their relevance today: how information is produced and organized in both traditional and emerging media, how information access is affected by political, economic and cultural factors, and the ethics of information use. Students will also acquire the practical skills of locating information sources in a variety of media and formats, critical evaluation of sources, and documentation and citation of traditional and emerging media and technologies. Students will apply what they learn to create and present research and documentation projects.

2012 Spring – MAT 1575 Calc II  – Reitz

2012 Spring – MAT 1575 Calc II – Reitz

This course is MAT 1575, Calculus II, taking place in the Spring 2012 semester with Professor Reitz. Avatar photo by Encel (http://www.flickr.com/photos/encels/4059671027)

Introduction to Linear Algebra

Introduction to Linear Algebra

Topics include systems of equations, matrices, determinants, eigenvalues and eigenvectors, inner products, vector spaces, and subspaces. Prereq: MAT1575 (Calculus II) Meeting Time – Tues/Thurs: 2:30 – 3:45 p.m. N705 Text: Linear Algebra and its Applications,4th Edition by David C. Lay. Publisher: Addison Wesley. Instructor’s name: Urmi Ghosh-Dastidar Office Hours: Tues: 11:50 – 12:50 p.m. Thurs: 4 – 5 p.m. (Namm 726) Office: N726 ; Ph: (718)260-5349 Office: Pearl 616 (by appointment only) If you want to meet me other than the office hours please make an appointment. e-mail: ughosh-dastidar@citytech.cuny.edu Note: All exams will take place in-class unless stated otherwise. The final exam date and time is fixed. You have to make yourself available for all in-class exams and final exam Technology prerequisites: A graphing calculator is required: We recommend a calculator which can compute eigenvalues. E-mail: All student must use City Tech e-mail address while taking this course. Reading e-mail on a regular basis is necessary. I may need to contact you via e-mail if situation arises. City Tech has provided all students with a City Tech email address. Your email address is the first letter of your first name, followed by your last name, followed by @campus.citytech.cuny.edu. You can access your email by going to the following web site: http://campus.citytech.cuny.edu/. For help with accessing email, you can also send an email to helpdesk@campus.citytech.cuny.edu. In case of emergency, you can call 718-254-8565 or email: epak@citytech.cuny.edu or rhoque@citytech.cuny.edu for technical help. Theme: Biodiversity: Eco-Math link through Linear Algebra A Brief Introduction Biodiversity and the Hudson River Flowing from the Lake Tear of the Clouds, North the Hudson River journeys 315 miles and drops 4,322 feet in elevation before emptying itself into New York Harbor. The Hudson River is home to diverse populations of fish, birds, and mammals that cohabit and compete among themselves for resources. Recently the American shad, Atlantic sturgeon, river herring (blue back herring and alewife), American eel, and largemouth bass are in decline. Intense economic harvesting pressure and overexploitation cause coastal and marine species to decline. Therefore, harvesting and fishing should be managed properly and carefully to avoid decline of current population. Food web analysis provides important information regarding the nature of competition among various organisms. Cluster analysis in graph theory is a popular method to seek partition of a given data set into several clusters so that the data points within the same cluster are more similar than those belonged in the separate clusters. In this project we will use cluster analysis using the concepts of linear algebra to study the competition among various species in a given food web, in particular, competition among various Hudson River species. Students will find a partition of the competition graphs based on the Hudson River food web such that the strength of competition (for shared preys) between two clusters (two groups of predators) is as low as possible; however, the strength of competition within the same clusters is as high as possible. Big Idea behind this project Study and analyze Hudson River Food Web and its competition graph to interpret the strength of species competition. Upon completion of this project, students should be able to answer the following questions: • Which predator species are more connected than others? • What happens if a specific species (particularly, a prey) dies out? Particularly, how does the removal of a particular species affect its predators and also the overall competition among all predator species? I believe through this project students will gain some insights to the mechanisms of interactions and competition among various species. Students will be able to propose further measures for early intervention if any species dies out, share their knowledge, and create public awareness of the need to promote a healthy and balanced ecosystem in their own community. My goals as the course instructor are: 1. To assist students develop a deep understanding of core mathematical concepts and help them appreciate the usefulness of mathematics to analyze and explain their community and environment. 2. To create challenging environment for high achiever students. 3. To provide training in conducting research in an interdisciplinary field combining mathematics and ecology based on biodiversity of the Hudson River Estuary; a topic that is carefully chosen to hold students’ interests. 4. To motivate students in higher studies in an interdisciplinary field. 5. To help students retain knowledge for long term. Students Learning Outcomes 1. To solve systems of linear equations using matrices. 2. To identify and use vector properties (spaces, subspaces, bases, inner product). 3. To identify properties of matrices (inevitability, eigenvalues, eigenvectors). 4. To use computer technology to solve practical problems. 5. To learn how to collect data. 6. To learn how to apply core mathematical concepts (particularly eigenvalues and eigenvectors) in solving real-world problems. 7. To understand interdisciplinary approach and the significance of it in real-world applications. 8. To write technical reports and disseminate the key findings. 9. To understand how to present research findings. 10. To learn how to work as a team. 11. To be able to use computer technology to assist in the above. General Education Learning Goals 1. To understand interdisciplinary approach and the significance of it in real-world applications. 2. To gather, analyze, and interpret the data with scientific reasoning 3. To improve communication skills via group work and oral presentations 4. To use logical thinking to deliver a written report

MAT2580

MAT2580

New York City College of Technology Mathematics Department Fall 2012 Prof. Urmi Ghosh-Dastidar Course: Introduction to Linear Algebra MAT2580 Section (6643) (3 credits) Topics include systems of equations, matrices, determinants, eigenvalues and eigenvectors, inner products, vector spaces, and subspaces. Prereq: MAT1575 (Calculus II) Meeting Time – Tues/Thurs: 2:30 – 3:45 p.m. N723 Text: Linear Algebra and its Applications,4th Edition by David C. Lay. Publisher: Addison Wesley. Instructor’s name: Urmi Ghosh-Dastidar Office Hours: Tues/Thurs: 3:50 – 4:50 p.m. (Namm 726) Office: N726 ; Ph: (718)260-5349 Office: Pearl 616 (by appointment only) If you want to meet me other than the office hours please make an appointment. e-mail: ughosh-dastidar@citytech.cuny.edu Note: All exams will take place in-class unless stated otherwise. The final exam date and time is fixed. You have to make yourself available for all in-class exams and final exam Technology prerequisites: A graphing calculator is required: We recommend a calculator which can compute eigenvalues. E-mail: All student must use City Tech e-mail address while taking this course. Reading e-mail on a regular basis is necessary. I may need to contact you via e-mail if situation arises. City Tech has provided all students with a City Tech email address. Your email address is the first letter of your first name, followed by your last name, followed by @campus.citytech.cuny.edu. You can access your email by going to the following web site: http://campus.citytech.cuny.edu/. For help with accessing email, you can also send an email to helpdesk@campus.citytech.cuny.edu. In case of emergency, you can call 718-254-8565 or email: epak@citytech.cuny.edu or rhoque@citytech.cuny.edu for technical help. Theme: Biodiversity: Eco-Math link through Linear Algebra A Brief Introduction Biodiversity and the Hudson River Flowing from the Lake Tear of the Clouds, North the Hudson River journeys 315 miles and drops 4,322 feet in elevation before emptying itself into New York Harbor. The Hudson River is home to diverse populations of fish, birds, and mammals that cohabit and compete among themselves for resources. Recently the American shad, Atlantic sturgeon, river herring (blue back herring and alewife), American eel, and largemouth bass are in decline. Intense economic harvesting pressure and overexploitation cause coastal and marine species to decline. Therefore, harvesting and fishing should be managed properly and carefully to avoid decline of current population. Food web analysis provides important information regarding the nature of competition among various organisms. Cluster analysis in graph theory is a popular method to seek partition of a given data set into several clusters so that the data points within the same cluster are more similar than those belonged in the separate clusters. In this project we will use cluster analysis using the concepts of linear algebra to study the competition among various species in a given food web, in particular, competition among various Hudson River species. Students will find a partition of the competition graphs based on the Hudson River food web such that the strength of competition (for shared preys) between two clusters (two groups of predators) is as low as possible; however, the strength of competition within the same clusters is as high as possible. Big Idea behind this project Study and analyze Hudson River Food Web and its competition graph to interpret the strength of species competition. Upon completion of this project, students should be able to answer the following questions: • Which predator species are more connected than others? • What happens if a specific species (particularly, a prey) dies out? Particularly, how does the removal of a particular species affect its predators and also the overall competition among all predator species? I believe through this project students will gain some insights to the mechanisms of interactions and competition among various species. Students will be able to propose further measures for early intervention if any species dies out, share their knowledge, and create public awareness of the need to promote a healthy and balanced ecosystem in their own community. My goals as the course instructor are: 1. To assist students develop a deep understanding of core mathematical concepts and help them appreciate the usefulness of mathematics to analyze and explain their community and environment. 2. To create challenging environment for high achiever students. 3. To provide training in conducting research in an interdisciplinary field combining mathematics and ecology based on biodiversity of the Hudson River Estuary; a topic that is carefully chosen to hold students’ interests. 4. To motivate students in higher studies in an interdisciplinary field. 5. To help students retain knowledge for long term. Students Learning Outcomes 1. To solve systems of linear equations using matrices. 2. To identify and use vector properties (spaces, subspaces, bases, inner product). 3. To identify properties of matrices (inevitability, eigenvalues, eigenvectors). 4. To use computer technology to solve practical problems. 5. To learn how to collect data. 6. To learn how to apply core mathematical concepts (particularly eigenvalues and eigenvectors) in solving real-world problems. 7. To understand interdisciplinary approach and the significance of it in real-world applications. 8. To write technical reports and disseminate the key findings. 9. To understand how to present research findings. 10. To learn how to work as a team. 11. To be able to use computer technology to assist in the above. General Education Learning Goals 1. To understand interdisciplinary approach and the significance of it in real-world applications. 2. To gather, analyze, and interpret the data with scientific reasoning 3. To improve communication skills via group work and oral presentations 4. To use logical thinking to deliver a written report

My Projects

CUNY Service Corps

CUNY Service Corps

The CUNY Service Corps will mobilize CUNY students, faculty and staff to work on projects that improve the short and long-term civic, economic and environmental sustainability of New York City and of its residents and communities. The program’s goals are three-fold: for students to make a meaningful difference through service while gaining valuable real-world work experience, earning a wage, and where appropriate, receiving college credit; for faculty members and staff, through their work with students in the program, to have additional opportunities to apply their expertise to addressing many of the city’s key challenges; and for residents, communities, and project sponsors to realize concrete benefits as a result of CUNY Service Corps projects.

Group 3 : Final Project – Research Tool

Group 3 : Final Project – Research Tool

A game that assists students with different styles of research paper. Helps with correct citation formats. Practice questions offer points that may be redeemed at the campus for various things such as cup of coffee, free copies or maybe a sweatshirt.

My Clubs

SIAM Student chapter

SIAM Student chapter

The NYCCT student chapter of SIAM is a chapter of the international SIAM organization.

Student Government Association

Student Government Association

The Student Government Association is the representative body for students. We are responsible for recommending student activity fee allocations, shaping policies affecting student life, coordinating extracurricular events and chartering new organizations. Feel free to contact SGA President, Lucas Almonte, with any questions, suggestions or concerns. He can be reached at SGAPresident@CityTech.Cuny.Edu If you wish to start a club on campus contact SGA Vice President, Sylwester Dombroski, at SGAVP@CityTech.Cuny.Edu