MECH 2430: Thermodynamics: Mid Term
 Spring, 2021: Point: 80

(Write the answers to all the questions in your own words. Hand-write math answers and upload in the answer script)

1. Given the following sets of values, Calculate the unknown quantity-

$$
\begin{align*}
& \mathrm{P}=1.01 \mathrm{~atm} \tag{10}\\
& \mathrm{n}=0.00831 \mathrm{~mol} \\
& \mathrm{~T}=25 \mathrm{c} \\
& \mathrm{~V}=?
\end{align*}
$$

2. Explain first law of thermodynamics by showing the relationship between Q, U and W .

When heat is added to a system, it transforms into other form of energy. Total heat input equals the internal energy generated and work done by the system.
Therefore, $\mathrm{Q}=\mathrm{U}+\mathrm{W}$
3. Calculate the pressure in a 200 Liter Tank containing 23.3 kg Nitrogen gas at 30 C . (10)
$\mathrm{PV}=\mathrm{nRT}$, Where $\mathrm{n}=\mathrm{m} / \mathrm{A}=23.3 * 1000 \mathrm{gm} / 28 \mathrm{gm} / \mathrm{mol}=832.14 \mathrm{~mol} \quad \mathrm{R}=8.314=$ Jule $/ \mathrm{mol} * \mathrm{~K}$
So, $\mathrm{P}=\mathrm{n} * \mathrm{R} * \mathrm{~T} / \mathrm{V}=832.14 \mathrm{~mol} * 8.314(\mathrm{Jule} / \mathrm{mol} * \mathrm{~K}) *(273+30) \mathrm{K} /(200$ Liter/1000)m^3
$=832.14 * 8.314 * 300 / 0.2=10377617 \mathrm{Jule} / \mathrm{m}^{\wedge} 3=10377617 \mathrm{~N} / \mathrm{m}^{\wedge} 2=10377617 \mathrm{~Pa}=10.37 \mathrm{MPa}$
4. What is specific volume and density of a liquid? What's their units? How are they related to each other?

Specific volume $=1 /$ density
5. Consider a water-cooled condenser in a large refrigeration system in which R-134a is the refrigerant fluid. Cooling water enters the condenser at 10 C and exits at 20 C at the rate of 1 kg / s. The refrigerant enters the condenser at 800 kPa MPa and 60 C , and exits as a liquid at 45 C . Determine the rate at which refrigerant flows through the condenser.

$$
\begin{aligned}
& \text { I } m_{r}\left(h_{i}\right\rangle_{r}+\dot{m} \omega\left(h_{i}\right)_{\omega}=\dot{m}_{r}\left(h_{e}\right) \gamma+\dot{m}_{\omega}(h e)_{\omega} \\
& \Rightarrow \quad \dot{m}_{r}\left(h_{i}-h_{e}\right)_{r}=\dot{m}_{w}\left(h_{e}-h_{i}\right) \omega \\
& \Rightarrow \dot{m}_{r}=\dot{m}_{\omega} \frac{\left(h_{e}-h_{i}\right) \omega}{\left(h_{i}-h_{e}\right) r} \\
& \text { water side } \rightarrow 10^{\circ} \mathrm{C} \text { saturated water, } h_{i}=42.6 \mathrm{~K} 3 \mathrm{~kg} \\
& 20^{\circ} \mathrm{C} \text { saturated water, } h \mathrm{e}=84.2 \mathrm{kj} \mathrm{~kg} \\
& \text { R-134 a side } \rightarrow \text { superheated } 800 \mathrm{Kpa} \text { at } 60 \mathrm{C} \\
& h:=294 \mathrm{~kJ} / \mathrm{kg} \\
& \text { Saturated Liquid at } 45 \mathrm{C} \text {, he }=114 \mathrm{kj} / \mathrm{kg} \\
& \therefore \dot{m}_{\gamma}=1 * \frac{(84.2-42.6)}{(294-114)}=0.23 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

6. Multiple choice questions
I. In a standard Pressure and Temperature which substance stays in a gaseous phase?
a. Water
b. Mercury
c. Nitrogen
d. Calcium
II. Which of the following is the Macroscopic property of a substance?
a. Heat
b. Phase
c. Pressure
d. Elevation
III. Which of the following is an absolute zero temperature?
a. $\quad 0{ }^{\circ} \mathrm{C}$
b. 0 F
c. $-273{ }^{\circ} \mathrm{C}$
d. None of the above
IV. If heat 20 J heat is added on a water bottle (assume no heat loss), then how much internal energy will be raised in the water?
a. 10 J
b. -10 J
c. 20 J
d. -20 J
V. The Specific volume and Enthalpy of saturated water vapor at 100 C are
a. $\quad 1.67 \mathrm{~m}^{3} / \mathrm{kg}$ and $2257 \mathrm{~kJ} / \mathrm{kg}$
b. $\quad 1.67 \mathrm{~m}^{3} / \mathrm{kg}$ and $2676 \mathrm{~kJ} / \mathrm{kg}$
c. $0.001 \mathrm{~m}^{3} / \mathrm{kg}$ and $419.02 \mathrm{~kJ} / \mathrm{kg}$
d. $17.19 \mathrm{~m}^{3} / \mathrm{kg}$ and $2515 \mathrm{~kJ} / \mathrm{kg}$
7. True/False questions-
e. Control surface is an imaginary surface representing a confined space where thermodynamic process occurs. T
f. In SI system the unit of weight is kg but the unit of force is Newton. F
g. Heat flows from hot to cold. T
