Properties of Substances

List of Equations-Pressure, Density, Sp. Volume

Control volume

everything inside a control surface

Pressure definition

 $P = \frac{F}{A}$ (mathematical limit for small A)

Specific volume

 $v = \frac{V}{m}$

Density

 $\rho = \frac{m}{V}$ (Tables A.3, A.4, A.5, F.2, F.3, and F.4)

Static pressure variation

 $\Delta P = \rho g H = -\int \rho g \, dh$ $T[K] = T[^{\circ}C] + 273.15$

Absolute temperature

T[R] = T[F] + 459.67

....

Units

Table A.1

Specific total energy

 $e = u + \frac{1}{2}V^2 + gz$

Concepts from Physics -

Newton's law of motion

F = ma

Acceleration

 $a = \frac{d^2x}{dt^2} = \frac{d\mathbf{V}}{dt}$

Velocity

$$\mathbf{V} = \frac{dx}{dt}$$

TABLE A.3

Properties of Selected Solids at 25°C

Substance	ρ (kg/m ³)	C _p (kJ/kg-K)	
Asphalt	2120	0.92	
Brick, common	1800	0.84	
Carbon, diamond	3250	0.51	
Carbon, graphite	2000-2500	0.61	
Coal	1200-1500	1.26	
Concrete	2200	0.88	
Glass, plate	2500	0.80	
Glass, wool	20	0.66	
Granite	2750	0.89	
Ice (0°C)	917	2.04	
Paper	700	1.2	
Plexiglass	1180	1.44	
Polystyrene	920	2.3	
Polyvinyl chloride	1380	0.96	
Rubber, soft	1100	1.67	
Sand, dry	1500	0.8	
Salt, rock	2100-2500	0.92	
Silicon	2330	0.70	
Snow, firm	560	2.1	
Wood, hard (oak)	720	1.26	
Wood, soft (pine)	510	1.38	
Wool	100	1.72	
Metals			
Aluminum	2700	0.90	
Brass, 60-40	8400	0.38	
Copper, commercial	8300	0.42	
Gold	19300	0.13	
Iron, cast	7272	0.42	
Iron, 304 St Steel	7820	0.46	
Lead	11340	0.13	
Magnesium, 2% Mn	1778	1.00	
Nickel, 10% Cr	8666	0.44	
Silver, 99.9% Ag	10524	0.24	
Sodium	971	1.21	
Tin	7304	0.22	
Tungsten	19300	0.13	
Zinc	7144	0.39	

TABLE A.4

Properties of Some Liquids at 25°C*

ρ C_p					
Substance	(kg/m ³)	(kJ/kg-K)			
Ammonia	604	4.84			
Benzene	879	1.72			
Butane	556	2.47			
CCl ₄	1584	0.83			
CO ₂	680	2.9			
Ethanol	783	2.46			
Gasoline	750	2.08			
Glycerine	1260	2.42			
Kerosene	815	2.0			
Methanol	787	2.55			
n-Octane	692	2.23			
Oil engine	885	1.9			
Oil light	910	1.8			
Propane	510	2.54			
R-12	1310	0.97			
R-22	1190	1.26			
R-32	961	1.94			
R-125	1191	1.41			
R-134a	1206	1.43			
R-410a	1059	1.69			
Water	997	4.18			
Liquid metals					
Bismuth, Bi	10040	0.14			
Lead, Pb	10660	0.16			
Mercury, Hg	13580	0.14			
NaK (56/44)	887	1.13			
Potassium, K	828	0.81			
Sodium, Na	929	1.38			
Tin, Sn	6950	0.24			
Zinc, Zn	6570	0.50			

^{*}Or $T_{\rm melt}$ if higher.

TABLE A.5

Properties of Various Ideal Gases at 25°C, 100 kPa* (SI Units)

Gas	Chemical Formula	Molecular Mass (kg/kmol)	R (kJ/kg-K)	ho (kg/m ³)	C_{p0} (kJ/kg-K)	C _{v0} (kJ/kg-K)	$k = \frac{C_p}{C_v}$
Steam	H ₂ O	18.015	0.4615	0.0231	1.872	1.410	1.327
Acetylene	C_2H_2	26.038	0.3193	1.05	1.699	1.380	1.231
Air	_	28.97	0.287	1.169	1.004	0.717	1.400
Ammonia	NH ₃	17.031	0.4882	0.694	2.130	1.642	1.297
Argon	Ar	39.948	0.2081	1.613	0.520	0.312	1.667
Butane	C_4H_{10}	58.124	0.1430	2.407	1.716	1.573	1.091
Carbon dioxide	CO_2	44.01	0.1889	1.775	0.842	0.653	1.289
Carbon monoxide	CO	28.01	0.2968	1.13	1.041	0.744	1.399
Ethane	C_2H_6	30.07	0.2765	1.222	1.766	1.490	1.186
Ethanol	C_2H_5OH	46.069	0.1805	1.883	1.427	1.246	1.145
Ethylene	C_2H_4	28.054	0.2964	1.138	1.548	1.252	1.237
Helium	Не	4.003	2.0771	0.1615	5.193	3.116	1.667
Hydrogen	H ₂	2.016	4.1243	0.0813	14.209	10.085	1.409
Methane	CH_4	16.043	0.5183	0.648	2.254	1.736	1.299
Methanol	CH_3OH	32.042	0.2595	1.31	1.405	1.146	1.227
Neon	Ne	20.183	0.4120	0.814	1.03	0.618	1.667
Nitric oxide	NO	30.006	0.2771	1.21	0.993	0.716	1.387
Nitrogen	N ₂	28.013	0.2968	1.13	1.042	0.745	1.400
Nitrous oxide	N ₂ O	44.013	0.1889	1.775	0.879	0.690	1.274
n-Octane	C_8H_{18}	114.23	0.07279	0.092	1.711	1.638	1.044
Oxygen	O_2	31.999	0.2598	1.292	0.922	0.662	1.393
Propane	C_3H_8	44.094	0.1886	1.808	1.679	1.490	1.126
R-12	CCl_2F_2	120.914	0.06876	4.98	0.616	0.547	1.126
R-22	CHCIF ₂	86.469	0.09616	3.54	0.658	0.562	1.171
R-32	CF_2H_2	52.024	0.1598	2.125	0.822	0.662	1.242
R-125	CHF2CF3	120.022	0.06927	4.918	0.791	0.722	1.097
R-134a	CF ₃ CH ₂ F	102.03	0.08149	4.20	0.852	0.771	1.106
R-410a	_	72.585	0.11455	2.967	0.809	0.694	1.165
Sulfur dioxide	SO_2	64.059	0.1298	2.618	0.624	0.494	1.263
Sulfur trioxide	SO_3	80.053	0.10386	3.272	0.635	0.531	1.196

^{*}Or saturation pressure if it is less than 100 kPa.

Properties of Pure Substance

Phases Solid, liquid, and vapor (gas)

Phase equilibrium $T_{\text{sat}}, P_{\text{sat}}, v_f, v_g, v_i$

Multiphase boundaries Vaporization, sublimation, and fusion lines:

general (Fig. 2.3), water (Fig. 2.4), and CO₂ (Fig. 2.5)

Triple point: Table 2.1

Critical point: Table 2.2, Table A.2 (F.1)

Equilibrium state Two independent properties (#1, #2)

Quality $x = m_{\text{vap}}/m$ (vapor mass fraction)

 $1 - x = m_{liq}/m$ (liquid mass fraction)

Average specific volume $v = (1 - x)v_f + xv_g$ (only two-phase mixture)

Equilibrium surface P-v-T Tables or equation of state

Ideal gas law Pv = RT $PV = mRT = n\overline{R}T$

Properties of Pure Substance

Universal gas constant $\overline{R} = 8.3145 \,\text{kJ/kmol K}$

Gas constant $R = \overline{R}/M$ kJ/kg K, Table A.5 or M from Table A.2

ft lbf/lbm R, Table F.4 or M from Table F.1

Compressibility factor Z Pv = ZRT Chart for Z in Fig. D.1

Reduced properties $P_r = \frac{P}{P_c}$ $T_r = \frac{T}{T_c}$ Entry to compressibility chart

Equations of state Cubic, pressure explicit: Appendix D, Table D.1

Lee Kesler: Appendix D, Table D.2, and Fig. D.1

First Law of Thermodynamics

 $E = U + KE + PE = mu + \frac{1}{2}mV^2 + mgZ$ Two-phase mass average Total energy

 $KE = \frac{1}{2}mV^2$ Kinetic energy

PE = mgZPotential energy

 $e = u + \frac{1}{2}\mathbf{V}^2 + gZ$ Specific energy

Enthalpy

Specific heat, heat capacity

Solids and liquids

 $h \equiv u + Pv$

 $u = u_f + x u_{fg} = (1 - x)u_f + x u_g$

 $h = h_f + x h_{f\sigma} = (1 - x) h_f + x h_{\sigma}$

$$C_{v} = \left(\frac{\partial u}{\partial T}\right)_{v}; C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}$$

Incompressible, so $v = \text{constant} \cong v_f \text{ (or } v_i) \text{ and } v \text{ small}$

 $C = C_v = C_p$ [Tables A.3 and A.4 (F.2 and F.3)]

$$u_2 - u_1 = C(T_2 - T_1)$$

 $h_2 - h_1 = u_2 - u_1 + v(P_2 - P_1)$ (Often the second term is small.)

 $h = h_f + v_f(P - P_{\text{sat}}); u \cong u_f$ (saturated at same T)

h = u + Pv = u + RT (only functions of T)

$$C_{\nu} = \frac{du}{dT}; C_p = \frac{dh}{dT} = C_{\nu} + R$$

$$u_2 - u_1 = \int C_v dT \cong C_v(T_2 - T_1)$$

$$h_2 - h_1 = \int C_p dT \cong C_p(T_2 - T_1)$$

Ideal gas