Ideal Gas Law

Ideal Gas Law

$P V=n R T$

$\mathrm{P}^{*} \mathrm{~V}$ is Proportional to T
Brings together gas properties.

Ideal Gas Equation

$\mathrm{PV}=\mathrm{nRT}$

$$
\mathbf{P}=\text { pressure }
$$

V = volume
$\mathrm{T}=$ temperature (Kelvin)
$\mathrm{n}=$ number of moles
$R=$ gas constant

Solve for constant (R)
Standard Temperature and Pressure (STP)

$$
\begin{aligned}
& T=0^{\circ} \mathrm{C} \text { or } 273 \mathrm{~K} \\
& \mathrm{P}=1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

$$
1 \text { mol = 22.4 L @ STP }
$$

$\frac{P V}{n T}$

Substitute values:

$$
\frac{(1 \mathrm{~atm})(22.4 \mathrm{~L})}{(1 \mathrm{~mole})(273 \mathrm{~K})} \quad=\mathrm{R}
$$

$$
R=0.0821 \text { atm L } / \mathrm{mol} \mathrm{~K}
$$

or
$\mathrm{R}=8.31 \mathrm{kPaL} / \mathrm{mol} \mathrm{K}$
Find R in J/kmol.K

Ideal Gas Law

What is the volume that 500 g of iodine will occupy under the conditions:

$$
\text { Temp }=300^{\circ} \mathrm{C} \text { and Pressure }=740 \mathrm{~mm} \mathrm{Hg} \text { ? }
$$

Step 1) Write down given information. mass $=500 \mathrm{~g}$ iodine amu of $\mathrm{I}_{2}=2 * 126.9=253.8 \mathrm{gm} / \mathrm{mol}$ Step 3) Solve for variable

```
T=300 }\mp@subsup{}{}{\circ}\textrm{C
P = 740 mm Hg=740/760=0.97 atm
R}=0.0821 atm L L/ mol K 
```

Step 4) Substitute in numbers and solve
n of 500 g iodine? $\mathrm{n}=$ mass/a.m.u $\mathrm{n}=(500 \mathrm{~g}) /(2 * 126.9 \mathrm{~g} / \mathrm{mol})=1.97 \mathrm{~mol}$ $300 \mathrm{C}=573 \mathrm{~K}$

$$
\begin{aligned}
\mathrm{V} & =\frac{(500 \mathrm{~g})(0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K})\left(300^{\circ} \mathrm{C}\right)}{740 \mathrm{~mm} \mathrm{Hg}} \\
\mathrm{~V} & =(1.97 \mathrm{~mol})^{*}(0.0821 \mathrm{~atm} . \mathrm{L} / \mathrm{mol} . \mathrm{k})^{*} 573 \mathrm{k} / 0.97 \mathrm{~atm} \\
& =95.54 \mathrm{~L} /(1000)=0.095 \mathrm{~m}^{\wedge} 3 .
\end{aligned}
$$

Ideal gas properties

- State of Matter
- P,V,T Defines the state of gas

FIGURE 2.2 The
separation of the phases
in a $P-T$ diagram.

FIGURE 2.1 Constant pressure change from a liquid to a vapor.

Ideal Gas State

Name some common gas-
Oxygen, Chlorine, Methane, Nitrogen, CO, Hydrogen, CO2, Xenon, Helium, Neon, Ozone, Air (mixture of N2(79\%) and O2(21\%))

FIGURE 2.17 The isometric, isothermal, and isobaric curves.

- $\mathrm{Pv}=\mathrm{RT}$
- $P=P r e s s u r e$
- $\mathrm{v}=\mathrm{volume}$
- R=R bar/M

$$
\text { Oxygen }=32 \mathrm{gm} / \mathrm{mol}, \mathrm{~N} 2=28 \mathrm{gm} / \mathrm{mol}
$$

Molecular wt. of air=0.79*28+0.21*32
$=28.9 \mathrm{gm} / \mathrm{mol}$
$=28.9 \mathrm{~kg} / \mathrm{kmol}$

M or $\mathrm{n}=$ molecular weight.

In this relation, \bar{R} is the universal gas constant with the value

$$
\bar{R}=8.3145 \frac{\mathrm{~kJ}}{\mathrm{kmol} \mathrm{~K}}
$$

and in English units it is

$$
R=\frac{\bar{R}}{M}
$$

$$
\bar{R}=1545 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{lbmol} \mathrm{R}}
$$

From universal gas constant
Find specific Gas Constant, R, for air.
Molecular wt of air= $28.9 \mathrm{~kg} / \mathrm{kmol}$
So, $\mathrm{R}=(8.3145 * 1000 \mathrm{~J} / \mathrm{kmol} . \mathrm{k}) /(28.9 \mathrm{~kg} / \mathrm{kmol})$

$$
=287.7 \mathrm{~J} / \mathrm{kg} . \mathrm{k} .=0.287 \mathrm{kN} . \mathrm{m} / \mathrm{kg} . \mathrm{k}
$$

Find the specific Gas constant of iodine $\left(I_{2}\right)$ gas
Find the specific Gas constant of Nitrogen $\left(\mathrm{N}_{2}\right)$ gas

Practice Problem

1. Find the specific Gas constant of iodine (I_{2}) gas. $R=8.3145 * 1000 /(2 * 126.9 * 2)$

- 2. Find the specific Gas constant of Nitrogen (N_{2}) gas $\mathrm{R}=8.3145^{*} 1000 /(28)=296 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$

3. What is the mass of air contained in a room 6 m by 10 m by 4 m if the pressure is 100 kPa and temperature is 25 C ?

- Universal gas constant $=8.3145 \mathrm{~kJ} / \mathrm{Kmol} . \mathrm{k}$

Ans-

- $P V=m . R . T=n . R . T$
- $m=P V / R . T=\left(100 \mathrm{kN} / \mathrm{m}^{\wedge} 2\right)^{*} 240 \mathrm{~m} \wedge 3 /\left((0.287 \mathrm{kN} . \mathrm{m} / \mathrm{kg} . \mathrm{k})^{*}(298 \mathrm{~K})\right)=280.5 \mathrm{~kg}$
- Practice/Learn_more about
- Periodic Table- Google
- Gas constant- Google
- Units of Pressure, Temp, vol, density, and more...... Google conversion
- For Example- 1 Kpa to Psi?

For Next Class

- Prepare with Ideal Gas Laws and Laws of thermodynamics.
- Architectural model prepared in Revit. Its in Openlab \rightarrow Lab 1

