Ideal Gas Law

Ideal Gas Law

PV = nRT

P*V is Proportional to T

Brings together gas properties.

Ideal Gas Equation

F

PV = nRT

P = nressure	Standard Temperature and Pressure (STP) T = 0 °C or 273 K P = 1 atm = 101.3 kPa = 760 mm Hg	
V = volume T = temperature (Kelvin) n = number of moles		
R = gas constant		
Solve for constant (R)	1 mol = 22.4 L @ STP	
<u>PV</u> nT	Recall: 1 atm = 101.3 kPa	
Substitute values:	C) O
<u>(1 atm) (22.4 L)</u> = R (1 mole)(273 K)	R = 0.0821 <u>atm L</u> mol K	(101.3 kPa) = 8.31 <u>kPa L</u> (1 atm) mol K
R = 0.0821 atm L / mol K	or R = 8.31 kPa L / mol K	
	Find R in J/km	ol.K

Ideal Gas Law

What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300°C and Pressure = 740 mm Hg?

Step 1) Write down given information. mass = 500 g iodine amu of $I_2=2*126.9=253.8$ gm/mol T = 300°C P = 740 mm Hg=740/760=0.97 atm R = 0.0821 atm · L / mol · K
Step 2) Equation: PV = nRTStep 3) Solve for variable V = $\frac{nRT}{P}$

Step 4) Substitute in numbers and solve

n of 500 g iodine? n=mass/a.m.u n=(500g)/(2*126.9 g/mol)=1.97 mol 300 C= 573 K

$$V = \frac{(500 \text{ g})(0.0821 \text{ atm} \cdot \text{L} / \text{mol} \cdot \text{K})(300^{\circ}\text{C})}{740 \text{ mm Hg}}$$
$$V = (1.97 \text{ mol})^*(0.0821 \text{ atm.L/mol.k})^* 573 \text{k/0.97 atm}$$
$$= 95.54 \text{ L/}(1000) = 0.095 \text{ m}^3 \text{ .}$$

Ideal gas properties

- State of Matter
- P,V,T Defines the state of gas

Ideal Gas State

Name some common gas-Oxygen, Chlorine, Methane, Nitrogen, CO, Hydrogen, CO2, Xenon, Helium, Neon, Ozone, Air (mixture of N2(79%) and O2(21%))

 $P = \begin{bmatrix} P \\ P_1 \\ P_2 > P_1 \\ P_1 \\ P_2 > P_1 \end{bmatrix}$ $P = \begin{bmatrix} T_1 T_2 \\ T_3 \\ P_2 \\ P_1 \\$

FIGURE 2.17 The isometric, isothermal, and isobaric curves.

and

Pv=RT

- P=Pressure
- v=volume
- R=R bar/M

$$R = \frac{\overline{R}}{M}$$

In this relation, \overline{R} is the universal gas constant with the value

$$\overline{R} = 8.3145 \frac{\text{kJ}}{\text{kmol K}}$$

$$\overline{R} = 1545 \frac{\text{ft-lbf}}{\text{lbmol R}}$$

M or n= molecular weight. From universal gas constant Find specific Gas Constant, R, for air. Molecular wt of air= 28.9 kg/kmol So, R=(8.3145*1000 J/kmol.k)/(28.9 kg/kmol) =287.7 J/kg.k.=0.287kN.m/kg.k

Find the specific Gas constant of iodine (I_2) gas Find the specific Gas constant of Nitrogen (N_2) gas

Practice Problem

- 1. Find the specific Gas constant of iodine (I_2) gas. R=8.3145*1000/(2*126.9*2)
- 2. Find the specific Gas constant of Nitrogen (N₂) gas R=8.3145*1000/(28)=296 J/kg.K
- 3. What is the mass of air contained in a room 6m by 10 m by 4 m if the pressure is 100 kPa and temperature is 25 C?
- Universal gas constant = 8.3145 kJ/Kmol.k

Ans-

- PV=m.R.T=n.R.T
- m=PV/R.T=(100kN/m^2)*240 m^3/((0.287kN.m/kg.k)*(298K))=280.5 kg
- Practice/Learn_more about
- Periodic Table- Google
- Gas constant- Google
- Units of Pressure, Temp, vol, density, and more...... Google conversion
- For Example- 1 Kpa to Psi?

For Next Class

- Prepare with Ideal Gas Laws and Laws of thermodynamics.
- Architectural model prepared in Revit. Its in Openlab \rightarrow Lab 1