Introduction to Thermodynamics

Dr. Akm Rahman
Spring, 2021
MECH 2430

Outline

- What is Thermodynamics?
- Thermodynamic system
- Control Volume
- Properties of Matters
- Process
- Cycle
- Units

What is Thermodynamics?

- It is a Science of Thermal Energy and Process about-
- How the energy is conserved
- How the energy is converted from one type to other.
- Example
- A process how temperature is changed in the uni
- Global warming
- Refrigeration system
- HAVC System
- A combustion engine where chemical energy is converted into power.
- Boiling water

What is Heat Transfer?

- A process of by which energy is transported in the form of heat between two places with a gradient in temperature.
- An intricate part of a thermodynamic system which deals with several mechanisms of energy transportation.
- Main reason behind the heat transfer
- Thermal gradient
- Usually heat transfer occurs between two T.D. System.

Thermodynamic System

Fig. Brief illustration of a coal based steam power plant

- A system that contains a device or devices, through which a matter is being studied.
- The study parameters are energy conversation, Conversion and transportation.
- Question for you-
- Name all the devices
- Name the thermodynamic systems, remember there is more than 1 system..
- Three major TD systems-
- 1. Coal combustion system
- 2. Steam generation system
- 3. Municipal hot water system

A Control Volume

- A volume enclosed by a surface to define the thermodynamic changes
- It is a confined space where thermodynamic process occurs

Properties of State and Substance

- Phase- it is a quantity of matter that is homogeneous throughout the volume considered.
- Liquid
- Solid
- Vapor
- Macroscopic Properties
- Observable- Pressure, Temperature, density
- Is heat a property?

What is the difference between heat and temperature?

Intensive and Extensive Properties

- Intensive Property
- A property independent of mass
- Pressure , temperature and density are intensive
- Doesn't change with mass
- Extensive Property
- Mass
- Total volume

Process

- Equilibrium condition
- A gravity driven process
- A process is a succession of states that passes through a path.
- E.g. This is a gas compression process
- Heating gas inside a piston is a process.

Cycle

- It is a repetition of a process.
- Thermodynamic cycle-Where thermodynamic process is present.
- E.g- HAVC heating and cooling
- 4 stroke IC engine
- Steam boiler- Water circulates, converts into steam and returns to water

Units

- System of units- SI vs English or Metric vs US customary
- Sensitivity of units- Pico, nano, micro, milli, kilo, Mega, Giga
- Unit of mass- kg, Ton, Ibm, Slug
- Unit of weight or Force- Newton, Ibf
- What's the Difference between weight and force?

Force=mass*acceleration

Gravitational Acceleration

$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{sec}^{\wedge} 2$ or $32.2 \mathrm{ft} / \mathrm{sec}^{\wedge} 2$
SI System, $1 \mathrm{~N}=1 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{\wedge} 2$
Gravitational force, $\mathrm{F}=\mathrm{m}^{*} \mathrm{~g}$
English system, 1lbf=32.2 lbm*ft/sec^2
What is the weight of a $1-\mathrm{kg}$ mass at an altitude where the local acceleration of gravity is $9.75 \mathrm{~m} / \mathrm{s}^{2}$?

Ans- 9.75 N
What is the weight of a $1-\mathrm{lbm}$ mass at an altitude where the local acceleration of gravity is $32.0 \mathrm{ft} / \mathrm{s}^{2}$?

Ans- $\mathrm{F}=\mathrm{m}^{*} \mathrm{~g}=1 \mathrm{lbm} * 32.0 \mathrm{ft} / \mathrm{sec}^{\wedge} 2=32.0 \mathrm{lbm}{ }^{*} \mathrm{ft} / \mathrm{sec}^{\wedge} 2=1 \mathrm{lbf}$
If mass is 1 lbm , and gravity is $15 \mathrm{ft} / \mathrm{sec}^{\wedge} 2-\rightarrow$ weight $=15 \mathrm{lbm} * \mathrm{ft} / \mathrm{sec}^{\wedge} 2 /\left(32.2 \mathrm{lbm} * \mathrm{ft} / \mathrm{sec}^{\wedge} 2\right)=0.465 \mathrm{lbf}$

Specific Volume and density

- Specific volume is Volume per unit mass, ν

Density= mass per unit volume, ρ

What is the relation between these two?

A $1-\mathrm{m}^{3}$ container, shown in Fig. 1.9, is filled with $0.12 \mathrm{~m}^{3}$ of granite, $0.15 \mathrm{~m}^{3}$ of sand, and $0.2 \mathrm{~m}^{3}$ of liquid $25^{\circ} \mathrm{C}$ water; the rest of the volume, $0.53 \mathrm{~m}^{3}$, is air with a density of

$$
v=1 / 0
$$

$1.15 \mathrm{~kg} / \mathrm{m}^{3}$. Find the overall (average) specific volume and density.
Given, Density of granite $=2750 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
Density of Sand= $1500 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
Find total mass $=$ density ${ }^{*}$ volume $=m_{\text {granite }}+\mathrm{m}_{\text {sand }}+\mathrm{m}_{\text {water }}+\mathrm{m}_{\text {air }}$

$$
\begin{aligned}
& =2750 * 0.12+1500 * 0.15+1000 * 0.2+1.15 * 0.53 \\
& =755 \mathrm{~kg}
\end{aligned}
$$

Sp. Volume $=$ Volume/unit mass=1 m^3/755 $\mathrm{kg}=0.001325 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$
Average density=1/ sp. Volume=1/0.001325=755 kg/m^3

Pressure

- Force per unit volume
- Atmospheric pressure, $\mathrm{p}=\mathrm{p}_{\mathrm{atm}}=14.7 \mathrm{psi}$ at sea level
- Two ways to measure pressure, Gauge and absolute.

If absolute pressure is 4 psi , then gauge pressure Is -10.7 psi, 10.7 psi (vacuum gauge)

Question

A $1-\mathrm{m}^{3}$ container is filled with 400 kg of granite stone, 200 kg of dry sand, and $0.2 \mathrm{~m}^{3}$ of liquid $25^{\circ} \mathrm{C}$ water. Using properties from Tables A. 3 and A.4, find the average specific volume and density of the masses when you exclude air mass and volume.

Given, Density of granite $=2750 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
Density of Sand $=1500 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$

Find a handwritten solution. Show me in the next class

Example Problem on Pressure

What is the pressure at the bottom of the $7.5-\mathrm{m}$-tall storage tank of fluid at $25^{\circ} \mathrm{C}$ shown in Fig. 1.15? Assume that the fluid is gasoline with atmospheric pressure 101 kPa on the top surface. Repeat the question for the liquid refrigerant R-134a when the top surface pressure is 1 MPa .

FIGURE 1.15 Sketch
for Example 1.6.

Solution
The densities of the liquids are listed in Table A.4:

$$
\rho_{\text {gasoline }}=750 \mathrm{~kg} / \mathrm{m}^{3} ; \quad \rho_{\mathrm{R}-134 \mathrm{a}}=1206 \mathrm{~kg} / \mathrm{m}^{3}
$$

The pressure difference due to gravity is, from Eq. 1.2,

$$
\Delta P=\rho g H
$$

The total pressure is

$$
P=P_{\text {top }}+\Delta P
$$

For the gasoline we get

$$
\Delta P=\rho g H=750 \mathrm{~kg} / \mathrm{m}^{3} \times 9.807 \mathrm{~m} / \mathrm{s}^{2} \times 7.5 \mathrm{~m}=55164 \mathrm{~Pa}
$$

Now convert all pressures to kPa :

$$
P=101+55.164=156.2 \mathrm{kPa}
$$

For the R-134a we get

$$
\Delta P=\rho g H=1206 \mathrm{~kg} / \mathrm{m}^{3} \times 9.807 \mathrm{~m} / \mathrm{s}^{2} \times 7.5 \mathrm{~m}=88704 \mathrm{~Pa}
$$

Now convert all pressures to kPa :

$$
P=1000+88.704=1089 \mathrm{kPa}
$$

