MECH 2322: MID TERM: SP 2021: Point-85

Elements	Pick any of the bonding below	Bonding Types (Pick from left column)	
NaCl	Ionic Bonding	Ionic	
SiC	Covalent Bonding	Covalent	
Aluminum	Metal Bonding	Metal	
CH ₄		Covalent	
H ₂		Covalent	

I. Determine the types of bonding between the elements below

II. Multiple Choice Questions

1. APF stands for

- a. Applied Physics Forum
- b. Atomic Packing Factor
- c. Asymmetric Potentiality Factor
- d. None of the above
- 2. Which of the following crystal system has the lowest packing density?
 - a. BCC
 - b. HCP
 - c. FCC
 - d. SCC
- 3. Among the Bonding types below which one is the weakest?
 - a. Ionic
 - <mark>b. Hydrogen</mark>
 - c. Covalent
 - d. Metallic
- 4. Determine the correct order for the brittleness of the following material
 - a. Glass>Metal>Plastic
 - b. Metal>Glass>Plastic
 - c. Metal<Plastic<Concrete
 - d. None of the above

III. Short Questions

- - a. Na
 - b. Fe
 - c. Si
- 2. Write the elaborations of the following terms
 - a. BCC
 - b. HCP
 - c. XRD

1

10

10

(5)

- 3. Write the Definition of the following terms in your own words
 - a. Lattice Parameter
 - b. Unit cell
 - c. Miller Indices
- 4. Calculate the density of the material given that its atomic weight is 141 g/mol with BCC crystal structure and lattice parameter of 0.35 nm. (10)

(10)

5. Determine Miller indices for the following planes. (be sure to redraw the cubes and identify the axis) SHOW YOUR WORKS IN HAND SKETCH. (10)

6. Show [111] direction and (111) plane in a cube and determine the angle between the direction and the plane. (10)

Using Table 3.1 for Copper compute the interplanar spacing for the (110) and (221) sets of planes
 (10)

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (a)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

Table 3.1 Atomic Radii and Crystal Structures for 16 Metals

P:7
Atomic radius ob coppor.
$$R = 0.1276 \text{ nm}$$

crystal structure, FCC
For FCC -> $a = 2\sqrt{2}R$
 $= 2\sqrt{2} \times 0.1278$
 $= 0.361 \text{ nm}$
For (110) planes -> $R = 1$, $R = 1$, $I = 0$
 $d_{110} = \int_{\sqrt{n^2+k^2+1^2}}^{a} = \int_{\sqrt{1^2+1^2+0^2}}^{0.361} = 0.255 \text{ nm}$
 $d_{221} = \int_{\sqrt{2^2+2^2+1^2}}^{a} = 0.120 \text{ nm}$
 $d_{120} = \int_{\sqrt{2^2+2^2+1^2}}^{a} = 0.120 \text{ nm}$