INTERATOMIC BONDS

Prof. H. K. Khaira HoD, MSME Deptt. MANIT, Bhopal

Atomic Structure and Interatomic Bonding

Goals

- Define basic concepts (refortify your chemistry):
 - Types of Bonding between Atoms
 - Bond Energy Curves
- Describe how types of bonding affect Bond-Energy Curves.
- Describe how the Bond-Energy Curve describes macroscale properties.

Learning Objective

- Use the Bond-Energy Curve to describe qualitatively the different types of materials and their macroscale properties.
- Know the origins of stress and strain, melting temperature, and thermal expansion.

How are Macroscopic Properties related to Bonding?

• Structure of atoms

- A. Protons, neutrons, and electrons
- B. Electron configurations: shells and subshells
- C. Valence states
- D. Atoms and the periodic table

Types of bonding between atoms

- A. Ionic bonding
- B. Covalent bonding
- C. Metallic bonding
- D. Secondary bonds
 - 1. Permanent dipoles and the hydrogen bond
 - 2. Temporary dipoles and the van der Waals bond

P Influence of Bond Type on Engineering Properties

- A. Brittle versus ductile behavior
- B. Electrical conductivity
- C. Melting temperature of polymers

Valence Electrons are...?

The Valence electrons are responsible for the chemical properties of atoms, and are those in the **outer** energy level.

Valence electrons - The <u>s</u> and <u>p</u> electrons in the outer energy level (the highest occupied energy level)

Core electrons – are those in the energy levels below.

The Octet Rule

The noble gases are unreactive in chemical reactions

In 1916, Gilbert Lewis used this fact to explain why atoms form certain kinds of ions and molecules

<u>The Octet Rule</u>: in forming compounds, atoms tend to achieve a noble gas configuration; 8 in the outer level is stable Each noble gas (except He, which has 2) has 8 electrons in the outer level

Formation of Cations Metals lose electrons to attain a noble gas configuration. They make positive ions (cations) If we look at the electron configuration, it makes sense to lose electrons: Na 1s²2s²2p⁶3s¹ 1 valence electron Na¹⁺ 1s²2s²2p⁶ This is a noble gas configuration with 8 electrons in the outer level.

Formation of Cations

Metals will have few valence electrons (usually 3 or less); calcium has only 2 valence electrons

Formation of Cations Metals will have few valence electrons Metals will *lose the valence electrons*

Formation of Cations Metals will have few valence electrons Metals will *lose the valence electrons* Forming positive ions

This is named the "calcium ion".

Formation of Anions Nonmetals gain electrons to attain noble gas configuration. They make negative ions (anions) $S = 1s^22s^22p^63s^23p^4 = 6$ valence electrons $S^{2} = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6} = noble gas$ configuration. <u>Halide ions</u> are ions from chlorine or other halogens that gain electrons

Formation of Anions Nonmetals will have many valence electrons (usually 5 or more) They will *gain* electrons to fill outer shell.

(This is called the "phosphide ion", and <u>should show</u> dots)

Stable Electron Configurations

All atoms react to try and achieve a noble gas configuration. Noble gases have 2 s and 6 p electrons. 8 valence electrons = already stable! This is the octet rule (8 in the outer level is particularly stable). Ar

Interatomic Bonds

Interatomic Bonds
Primary Bond
- Ionic Bond
- Covalent Bond
- Metallic Bond

Secondary Bond –Van der Waals Bond

Primary Bond

Primary Bond

Ionic Bond
 Covalent Bond
 Metallic Bond

Ionic Bond Anions and cations are held together by opposite charges (+ and -) Ionic compounds are called Salts. Simplest ratio of elements in an ionic compound is called the formula unit. The bond is formed through the transfer of electrons (lose and gain) Electrons are transferred to achieve noble gas configuration.

Na C. The metal (sodium) tends to lose its one electron from the outer level.

The nonmetal (chlorine) needs to gain one more to fill its outer level, and will accept the one electron that sodium is going to lose.

Na⁺ Cl-

• The electron of the Na atom is removed and attached to the CI atom

Bonding energy: 1-10 eV (strong)

Lets do an example by combining calcium and phosphorus:

Ca · P·

All the electrons must be accounted for, and **each** atom will have a noble gas configuration (which is stable).

P

Ca²⁺ Ca

 Ca^{2+}

P. 3-

Ca²⁺ Ca²⁺

Ca²⁺

P 3-

$= Ca_3P_2 \leftarrow Formula Unit$

This is a **chemical formula**, which shows the <u>kinds</u> and <u>numbers of atoms</u> in the smallest representative particle of the substance.

For an ionic compound, the smallest representative particle is called a: Formula Unit

- Occurs between + and ions
- Requires electron transfer
- Large difference in electronegativity required
- An ionic bond is created between two unlike atoms with different electronegativities
- When sodium donates its valence electron to chlorine, each becomes an ion; attraction occurs, and the ionic bond is formed

Ionic Bonding

Primary Bonding Types: IONIC

Ionic Compounds

- 1) Also called SALTS
- Made from: a CATION with an ANION (or literally from a <u>metal</u> combining with a <u>nonmetal</u>)
Properties of Ionic Compounds 1. Crystalline solids - a regular repeating arrangement of ions in the solid lons are <u>strongly</u> bonded together. Structure is rigid. 2. <u>High melting points</u>

Electrical Conductivity

When voltage is applied to an ionic material, entire ions must move to cause a current to flow. Ion movement is slow and the electrical conductivity is poor.

Electrical Conductivity Conducting electricity means allowing charges to move. In a solid, the ions are locked in place. lonic solids are insulators. When melted, the ions can move around. 3. Melted ionic compounds conduct. NaCI: must get to about 800 °C. <u>Dissolved in water</u>, they also conduct (free to move in aqueous solutions)

81 Figure 7.11 Electrical Conductivity of Molten Sodium Chloride

The ions are <u>free to move</u> when they are **molten** (or in **aqueous solution**), and thus they are able to conduct the electric current.

lonic solids are brittle

Ionic solids are brittle Strong Repulsion breaks a crystal apart, due to similar ions being next to each other. + + Force + -

Covalent Bond

Covalence bond

- Bonding energy: ~1-10 eV (strong)
- Two atoms share a pair of electrons
- Examples: C, Ge, Si, H₂

Covalent bonding requires that electrons be shared between atoms in such a way that each atom has its outer *sp* orbital filled. In Si, with a valence of four, four covalent bonds must be formed.

The tetrahedral structure of silica (SiO₂), which contains covalent bonds between Si and oxygen atoms

Covalent Bond

- > strong directional nature of bonding
- Iow electrical conductivities at low temp when specimens are pure

Metallic Bonds

Metallic Bonding

> Arises from a sea of donated valence electrons (1,

2, or 3 from each atom)

Primary bond for metals and their alloys

Metallic Bond

Positive ions in a sea of electrons

Bonding energy: ~1-10 eV (strong)

Metallic Bonding

 The metallic bond forms when atoms give up their valence electrons, which then form an electron sea.
 The positively charged atom cores are bonded by

mutual attraction to the

negatively charged

electrons.

Primary Bonding Types: METALLIC

Metals share so-called electrons, or a "sea of electron" (electron-glue).

Electrons move (or "hop") from atom to atom.

Metallic bonds may be weak or strong Bonding energies (E_0): range from 68 kJ/mol (0.7 eV/atom) for Hg to 850 kJ/mol (8.8 eV/atom) for W. Melting temperatures ($T_{melt} \sim E_0$): -39 C for Hg and 3410 C for W.

Stronger bonds lead to higher melting temperature: atomic scale property → macroscale property.

Sea of Electrons Electrons are free to move through the solid. Metals conduct electricity.

Electrical Conductivity

Metallic Bonding

When voltage is applied to a metal, the electrons in the electron sea can easily move and carry a current.

Metallic Bonding

> mechanical property

brittle

Metallic bonding

ductile

Plastic Deformation Mobile electrons allow atoms to slide by, sort of like ball bearings in oil.

Metallic Bonds How metal atoms are held together in the solid? Metals hold on to their valence electrons very weakly. Think of them as positive ions (cations) floating in a sea of electrons

Secondary Bond

van der Waals bond

Secondary Bonding

Arises from interaction between

- Induced dipoles
- Induced dipoles and polar molecules
- Polar molecules

Secondary Bond (van der Waals)

Two types of Secondary: induced dipolar and permanent dipole.

- Induced dipolar interactions are weak and depend on molecular environment.
- They are typically caused by vibrational effects within the particular molecule and lead to interactions **between** molecules.
- Hence, they are **weak** secondary bonds to the stronger molecular bonds.

Example of Induced Dipole: Argon Gas

The positive nuclei repel one another and the electron cloud deforms in the neighboring atoms such that the two dipoles align and their is a weak attraction via dipolar forces, $1/r^4$.

van der Waals bond

Bonding energy:~0.01 eV (weak)

Compared to thermal vibration energy k_BT ~
0.026 eV at T = 300 K
Examples: inert gases

Ar

		Bo	onding	
Type of Bond	Substance	Bond Melting Energy* Temperature kcal/mole (°C)		Characteristics
Ionic	CaCl NaCl LiF CuF ₂ Al ₂ O ₃	155 183 240 617 3618	646 801 870 1360 3500	Low electrical conductivity; trans- parent; brittle; high melting tem- perature
Covalent	Ge GaAs Si SiC Diamond	75 ≈75 84 283 170	958 1238 1420 2600 3550	Low electrical conductivity; very hard; very high melting temperature
Metallic .	Na Al Cu Fe W	26 74 81 97 201	97.5 660 1083 1535 3370	High electrical and thermal con- ductivity; easily deformable; opaque
Van der Waals	Ne Ar CH₄ Kr Cl₂	0.59 1.8 2.4 2.8 7.4	248.7 189.4 184 157 103	Weak binding; low melting and boiling points; very compressible
Hydrogen	HF H₂O	7 12	92 0	Higher melting points than Van der Waals bonding; tendency to form groups of many molecules

Important Properties

Melting temperature
 Elastic modulus
 Thermal expansion coefficient

Interatomic Forces Here we will discuss the forces between atoms The forces may be both attractive and repulsive The net force is important to decide the bonding strength between atoms

Origin of Bonding Curve

arises from attractive plus repulsive interactions between atoms(ions)

 $Energy: E_{total} = E_A + E_B$

F = 0 at equilibrium r_0 : can find r_0 .

How are Macroscopic Properties related to Bonding?

The Bond-Energy Curve

- A. Dependence of potential energy on atomic spacing
 - 1. Long-range attraction versus short-range repulsion
 - 2. Superposition of attractive and repulsive potentials

B. The bond-energy curve and engineering properties

- 1. Melting temperature
- 2. Elastic modulus
- 3. Thermal expansion coefficient

• How are macroscopic properties (mechanical, structural, thermal, electrical, optical, ...) most simply related to bonding?

Melting Temperature

Callister

Table 2.3Bonding Energies and Melting Temperatures forVarious Substances

		Bondi	Melting	
Bonding Type	Substance	kJ/mol (kcul/mol)	eV/Atom, Ion, Molecule	Temperalare (°C)
Ionic	NaCl	640 (153)	3.3	801
	MgO	1000 (239)	5.2	2800
Covalent	Si	450 (108)	4.7	1410
	C (diamond)	713 (170)	7.4	>3550
Metallic	Hg	68 (16)	0.7	-39
	Al	324 (77)	3.4	660
	Fe	406 (97)	4.2	1538
	W	849 (203)	8.8	3410
van der Waals	Ar	7.7 (1.8)	0.08	-189
	Cl ₂	31 (7.4)	0.32	-101
Hydrogen	rogen H ₂ O		0.36 0.52	-78 0

What is relationship between Bonding Energy and T_{mett}?
Elastic Moduli, E (Young's Modulus)

 $E = d^2 U/dr^2(r_0)$ which is the curvature at r_0

like "spring constant" F= k(r-r₀) and linear near equilibrium.

Negative F - compression Positive F - tension

E modulus \uparrow as $E_0 \downarrow$ (deeper)

Elastic Moduli, E (Young's Modulus)

 Recall: Slope of stress strain plot (proportional to the E) depends on bond strength of metal

Comparison of Elastic Moduli

Material	Modulus of Elasticity		Shear Modulus		
	GPa	10 ⁶ psi	GPa	10 ⁶ psi	Poisson's Ratio
	Metal	Alloys			
ungsten	407	59	160	23.2	0.28
steel	207	30	83	12.0	0.30
lickel	207	30	76	11.0	0.31
ītanium	107	15.5	45	6.5	0.34
Copper	110	16	46	6.7	0.34
Brass	97	14	37	5.4	0.34
Aluminum	69	10	25	3.6	0.33
Agnesium	45	6.5	17	2.5	0.35
					0.00
Silicon (single xtal) Glass (pyrex) SiC (fused or sintered) Graphite (molded) High modulus C-fiber	120-190 70 207-483 ~12 400	(depends	on crys	tallograph	nic direction)

What can you now say about ...

What is T_{met} of ceramic, metal, polymer? Why? What is *E* of ceramic, metal, polymer? Why? What do force-extension or stress-strain curves look like?

Summary: Bonding, Structure, Properties

Ceramics Ionic and Covalent bonds

Metals Metallic bonding

Polymers Covalent and Secondary Large bond energies large T_m , E Small α

Varying bond energy intermediate T_m , E, α

directional properties secondary dominates outcome small T_m , E large α

Synopsis

- Bonding between atoms dictates macroscale properties in solids, e.g. mechanical and electrical, as well as molecules.
 - Binding energies related to melting temperature.
 - •Thermal expansion related to curvature of binding curve.
 - Initial stress-strain behavior (elastic moduli) dictated by binding curve. (NOT TRUE for plasticity, which is controlled by line defects later!)
- Point defects do not affect mechanical properties to a large extent, but could affect electrical properties (resistivity).

