# Introduction to Engineering Materials

Fall 2020

Dr. Akm Rahman

### Why Study materials Science & Engineering

- Understand the prosperities of Materials
- Selection of Right Materials in Terms of-
  - Material Properties, characteristics
  - Materials Abundance, Availability
  - Materials Processing
  - Materials Durability
  - Materials Cost

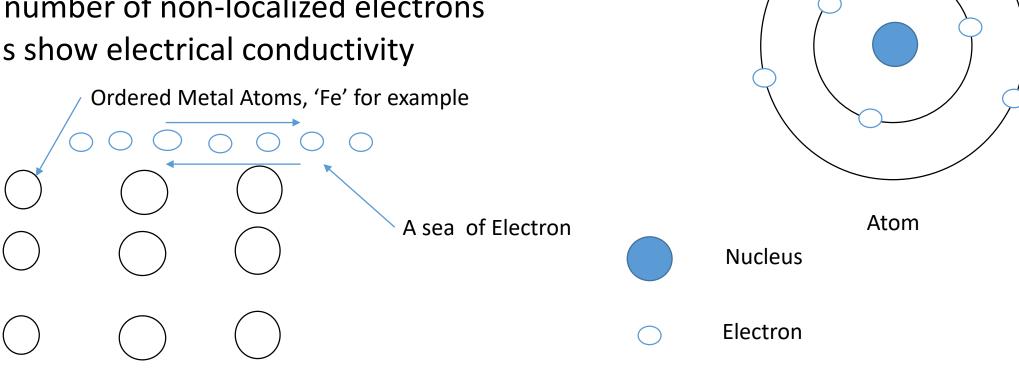
#### Classification of Materials

#### Metal

#### Ferrous-

- Iron, Commonly known as 'Fe' came from 'Ferrous', This is called Ferrous material.
  - Cast Iron
  - Carbon Steel (Alloy of Iron)
    - 1018
    - 1065
    - 1080
  - Stainless Steel (Alloy of Iron)
    - SAE 304, SAE 310, SAE 316, SAE 410
- Non-Ferrous
  - Aluminum
    - Al 6061
  - Cu
    - Brass (An Alloy of Cu and Ni)

#### Plastic


- Thermoplastics- Poly Ethylene (PE), Poly-Propylene (PP), Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), Acrylic, ABS, Nylon, PLA, Poly-Carbonate.
- Thermosets- Poly-Urethanes, Polyester, Epoxy Resin, Vulcanized Rubber.

#### Ceramics

- Sintered ( A Process where high pressure and Temperature are simultaneously applied)
  - Aluminum Nitrides, Aluminum Oxides, Crucibles
- Non-sintered
  - Bricks, Concretes, Tiles, Pottery

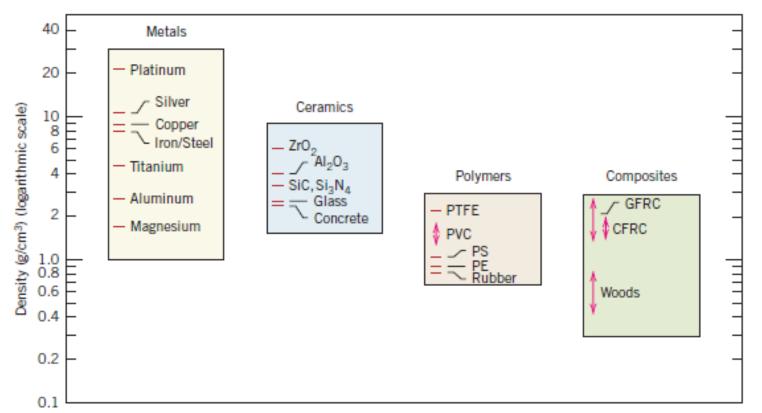
#### Metals

- Ordered group of atoms and molecules
- Relatively Denser than Metals and Polymers
- Large number of non-localized electrons
- Metals show electrical conductivity



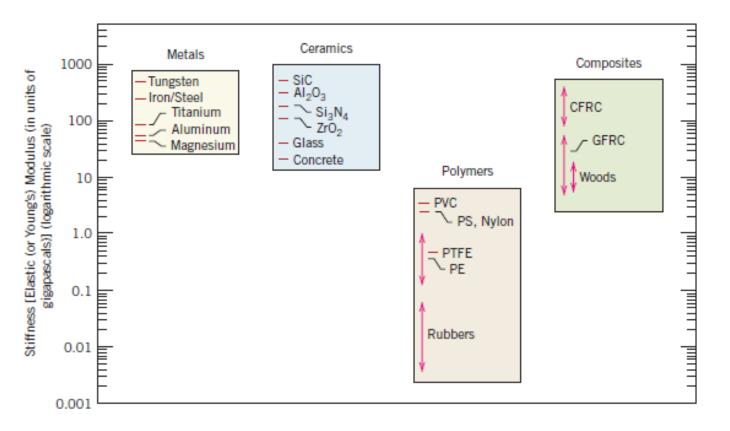
#### Ceramics

- Mostly oxide, carbides and Nitrides, Example Aluminum Oxide, Iron Oxide, Silicon Di-Oxide (Silica)
- Typically Very Hard and Brittle
- Low Resistance to Fracture
- High Temperature Resistant
- Low Thermal Conductivity


Silicon-→Silica Silicon is a Single Si Atom Si+O2→SiO2 Silica is a Molecule, made of Si and O

### Polymers

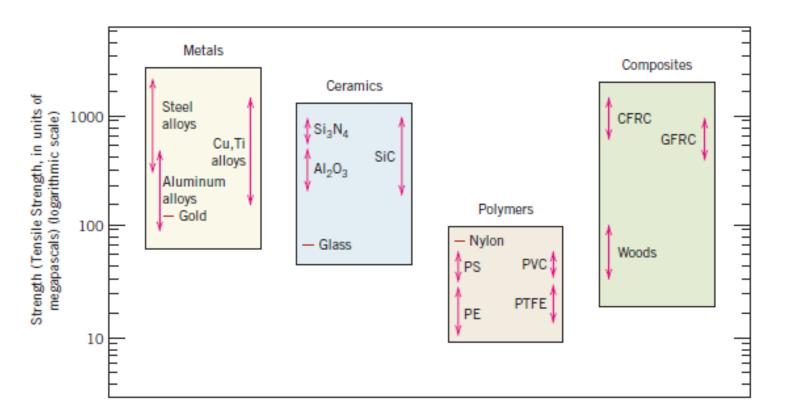
- Plastic and Rubber Materials
- Mostly Organic Compounds (Compound that contains Carbon)
- Molecular Structure is very Large
- Start from a *Monomer* and create a large chain after reaction


Mostly Abundant elements are- Carbon, Si, O, N

#### Density Comparison of Materials



- What is density?
- Density=Mass/Volume
- Why Density matters?
  - Higher the density, heavier
  - Lighter material saves weigh

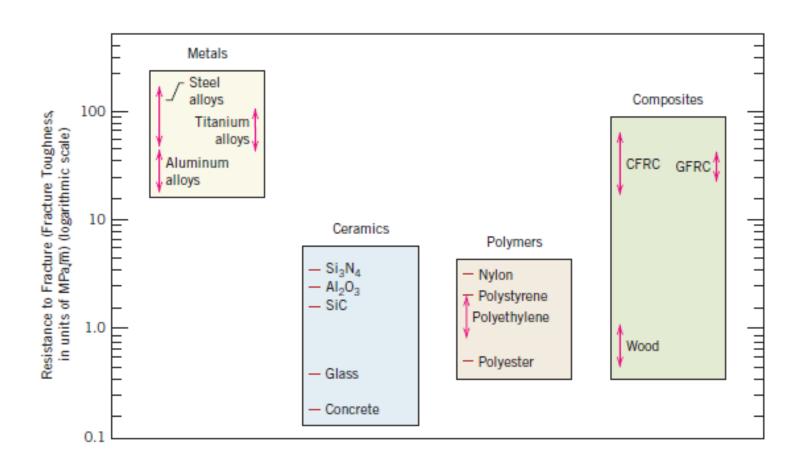

#### Stiffness Comparison



What is stiffness?

- Modulus of rigidity
- Tells you how rigid the material is.

## Tensile Strength Comparison




- What is strength?
  - Stress that can be applied without failure

#### What is Stress?

• Force applied to unit sectional area.

#### Fracture Resistance



- This is not Tensile Resistance
- Fracture Resistance
  - With Crack
    - Metal is good
    - Polymer is not good
    - Ceramic is not good
  - Without Crack
    - Metal is good
    - Polymer is okay
    - Ceramic is not good

### **Electrical Conductivity**



• What is this?

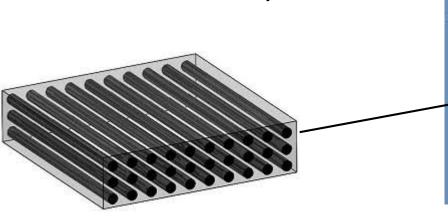
- Ability to conduct electrons.
- Conductors
  - Cu, Aluminum
- Insulators
  - Ceramics and Polymers

#### **Common Materials Applications**



- What Materials are They?
- Kitchen ware
- Coins
- Nuts and Bolts
- Scissors
- Ring
- All metals




- What Materials Are They?
  - Brick
  - Pottery
  - Tile
  - Glass
  - Scissor
- Glass and Scissor are not ceramic
- Everything else Ceramic



- What Materials are They?
- Helmet-Plastic
- Hard Balls- Hard Plastic
- Bottles- Soft Plastic
- Tire- Rubber
- Dice- Hard Plastic
- Utensils-Plastic

#### Composites

- A Composition of two or More Materials
- Man Made-
  - CFRP- Carbon Fiber reinforced Polymers
  - GFRP-Glass fiber reinforced Polymers
- Natural-
  - Wood





#### Some Properties of Common material

| Materials                 | Ultimate Tensile<br>Strength, MPa | Hardness          | Density g/cc | % Elongation |
|---------------------------|-----------------------------------|-------------------|--------------|--------------|
| Acrylic                   | 62                                | 94, Rockwell M    | 1.18         | 4-5%         |
| HDPE                      | 11-43                             | 33-66, Rockwell R | 0.92-2.55    |              |
| Ероху                     | 96.5                              | 121, Rockwell M   | 1.5          | 0.7-400%     |
| 1018 Steel, cold<br>drawn | 440                               | 71, Rockwell B    | 7.87         | 15%          |
| 6061 Al-T6                | 275                               | 100, BHN          | 2.70         | 17-95%       |
| Silicon Nitride           | 830 ( Flexural<br>Strength)       | 9, MOHS           | 3.44         | 0.5-1%       |
|                           |                                   |                   |              |              |

### What Materials Properties are Concerned?

- Strength
- Hardness
- Density
- Ductility vs Rigidity
- Conductivity (Electrical and Thermal)
- Thermal Resistance

### Assignment

- Explore a number of Engineering applications of Materials in your daily life.
- List at least 10 applications with materials. Try to include picture of each.
- Categorize them in terms of following-
  - Engineering/Technical Name of Material and its Application
  - Types (Metals, Ceramics, Polymers, Composites)
  - Strength
  - Ductility
- Include everything in a Table.
- Submit in D2L/Blackboard Assignment link.