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An essential concept required to understand the diffraction of X-rays by 
crystal lattices (at least using the Bragg treatment) is the presence of 
planes and families of planes in the crystal lattice.  Each plane is 
constructed by connecting at least three different lattice points together 
and, because of the periodicity of the lattice, there will a family (series) of 
planes parallel passing through every lattice point.  A convenient way to 
describe the orientation of any of these families of plane is with a Miller 
Index of the form (hkl) in which the plane makes the intercepts with a unit 
cell of a/h, b/k and c/l.  Thus the Miller index indicates the reciprocal of the 
intercepts.

2-D planes

Note: If a plane does not 
intersect an axis, the intercept 
would be ∞ and the reciprocal is 
0.

Note: If the reciprocal of the 
intercept is a fraction, multiply 
each of the h, k and l values by 
the lowest common 
denominator to so that they 
become integers!



59-553 48

(110) planes (130) planes

a

b

(-210) planes
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(100) face

[100] vector

(100) planes

(-100) face

The orientation of planes is best represented by a vector normal to the 
plane.  The direction of a set of planes is indicated by a vector denoted by 
square brackets containing the Miller indices of the set of planes.  Miller 
indices are also used to describe crystal faces.

Planes in Lattices and Miller Indices
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(hkl)  denotes a set of planes

[hkl] designates a vector (the direction of the planes)

{hkl} set of faces made equivalent by the symmetry of the 
system, thus:

{100} for point group 1 this refers only to the (100) face

{100} for point group -1 this refers to (100) and (-100) faces

for mmm {111} implies 
(111),(11-1),(1-11),(11-1),(-1-11),(-11-1),(1-1-1),(-1-1-1)

A summary of notation that you will see in regard 
to planes and/or crystal faces:
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Pictures from: http://www.gly.uga.edu/schroeder/geol6550/millerindices.html
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Note that for hexagonal systems, the Miller-Bravais indices are often used 
instead.  These have the form (hkil), where h, k, and i are the reciprocals of 
the plane intercepts for the three co-planar vectors indicated below and l is 
the reciprocal for the intercept in the c direction.  Note that h, k and i are not 
linearly independent so the rule h+k+i = 0 must always be obeyed.

b

a
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We are interested in the planes in a crystal lattice in the context of X-ray 
diffraction because of Bragg’s Law:

n = 2 d sin()
Where: 
n is an integer

 is the wavelength of the X-rays

d is distance between adjacent 
planes in the lattice

 is the incident angle of the  X-
ray beam
Bragg’s law tells us the conditions that must be met for the reflected X-ray 
waves to be in phase with each other (constructive interference).  If these 
conditions are not met, destructive interference reduces the reflected 
intensity to zero!

W.H.Bragg and son W.L.Bragg were awarded the Nobel prize in 1915.
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Bragg’s Law can be derived using simple geometry by considering the 
distances traveled by two parallel X-rays reflecting from adjacent planes.  
The X-ray hitting the lower plane must travel the extra distance AB and BC.  
To remain in phase with the first X-ray, this distance must be a multiple of the 
wavelength thus:

n = AB+BC = 2AB 
(since the two triangles are identical)

The distance AB can be expressed in terms 
of the interplanar spacing (d) and incident 
angle () because d is the hypotenuse of 
right triangle zAB shown at right.  
Remember sin = opposite/hypotenuse

sin() = AB/d   thus AB = d sin()

Therefore:
n = 2 d sin()

Note: d and sin() are inversely proportional 
(reciprocal).  This means that smaller values 
of d diffract at higher angles – this is the 
importance of “high angle” data!
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You may wonder why to X-rays reflect in this way and what is causing them 
to “reflect” in the first place.  The actual interaction is between the X-rays and 
the ELECTRONS in the crystal and it is a type of elastic scattering.  The 
oscillating electric field of the X-rays causes the charged particles in the 
atom to oscillate at the same frequency.  Emission of a photon at that 
frequency (elastic) returns the particles in the atom to a more stable state.  
The emitted photon can be in any direction and the intensity of the scattering 
is given by the equation:

I(2) = Io [(n e4)/(2 r2 m2 c4)] [(1 + cos2(2))/2]

I(2) = observed intensity
Io = incident intensity
n = number of scattering sources
r = distance of detector from scattering source
m = mass of scattering source
c = speed of light, e = electron charge, [(1 + cos2(2))/2] is a polarization factor

Note that the mass of the scattering particle (m) is in the denominator – this 
means that the scattering that we see is attributable only to the electrons 
(which have masses almost 2000 times less than that of a proton).
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Max von Laue derived a different set of equations describing the “in phase” 
diffraction of X-rays by a line of scattering objects (note that the n in the 
diagram below is the integer corresponding to the integer n in the Bragg 
equation).  Each line of objects generates cones of “in phase” scattering that 
follow the equations:

a(cos 1 – cos 1) = h  (for a line in the a direction)
b(cos 2 – cos 2) = k  (for a line in the b direction)
c(cos 3 – cos 3) = l  (for a line in the c direction)

Laue’s interpretation

Where  is the angle between the incident beam 
and the line and  is the angle between the cone 
and the line of scatterers.  In three dimensions, a 
reflection will only be observed at the intersection of 
the cones in all three directions (all three equations 
are satisfied).

With a little geometry (see Ladd and Palmer 3.4.3), 
it can be shown that this treatment is equivalent to 
Bragg’s law.
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If they interact with electrons in the crystal, incident X-rays will be scattered.  
Only the X-rays that scatter “in phase” (constructive interference) will give 
rise to reflections we can observe.  We can use Bragg’s Law to interpret the 
diffraction in terms of the distance between lattice planes in the crystal based 
on the incident and diffraction angle of the reflection.

Note: The diffraction angle is 
generally labeled 2 because 
of the geometric relationship 
shown on the left.


