Applied Statics and Strength of Materials

сомтек 17

Combined Stresses

Type 1- Combined axial and Bending

Type 2- Combined Normal and Shear Stress
Distributed load

Tension
Compression

Tension

Combined Stress

Type 1

Figure 17.4 Combined axial and bending stresses.

(a) Simply supported beam

Beam Section

Figure 17.6 Method of superposition.

Example

W 14x61 beam
Compute Maximum combined tensile and compressive stress

(a) Loaded beam
(b) Axially loaded beam

Normal Stress $=P / A \quad$ Bending stress $=M C / I$
(c) Transversely loaded beam
$M=w L \wedge 2 / 8=6 * 100 / 8=75$ kip-ft

$$
\begin{aligned}
& P=100 \text { kips } \\
& \text { Normal }=100 / 17.9=5.6 \mathrm{ksi} \\
& \mathrm{M}=\mathrm{wL}^{2} / 8 \\
& \text { Bending Stress }=75^{*} 12^{*} 6.95 / 640 \\
& \text { I from table= } 640 \text { in^4 } \\
& =9.77 \mathrm{ksi} \\
& \text { C from Table, }=13.9 / 2=6.95 \text { in } \\
& \mathrm{A}=17.9 \mathrm{in}^{\wedge} 2
\end{aligned}
$$

Figure 17.7 Stress distributions at midspan.

$F_{\text {top, }}$ max $=$ Normal-Bending stress
$F_{\text {bottom }}$, max= Normal+Bending stress

(a) Axial tensile stress
(b) Bending stress
(c) Combined stress

Figure 17.8 Load diagram.

Steel pipe

Steel
Pipe
Find Max Combined Stress

Compressive stress= P / A
$\mathrm{b}=28 \mathrm{ft}$
Moment=b*H

Solution in Excel

Figure 17.9 Stress distributions in plane A-B.

$$
\begin{aligned}
& \mathrm{fc}=\mathrm{P} / \mathrm{A} \\
&=7500 / 6= \\
& \mathrm{M}=\mathrm{H}^{*} \mathrm{~b}
\end{aligned}
$$

Stress at $A=-f c+f b$

Stress at $B=-f c-f b$

(a) Axial compressive stress
(b) Bending stress
(c) Combined stress

Figure 17.10 Combined stresses caused by eccentric load.

Figure 17.28 Axially loaded member and Mohr's circle.

Figure 17.29 Shear stress direction on inclined plane.

Typical Lumber failure and the failure planes under compression

(a)

(b)

(c)

(d)

(e)

(f)

Failure types of nonbuckling clear wood in compression parallel to grain: (a) crushing, (b) wedge splitting, (c) shearing, (d) splitting, (e) crushing and splitting, (f) brooming or end rolling.

Figure 17.30 Mohr's circle: uniaxial stress.

Figure 17.31 Mohr's circle example.

(a) Original stressed element

General State of Stress

Sigma 1,2= OM \pm Circle Radius $=($ sigma_x+sigma_y)/2 \pm sqrt((MG^2)+(GX^2)) $=($ sigma_x + sigma_y)/2 \pm sqrt ((sigma_x-Sigma$y)^{\wedge} 2 / 4+\mathrm{Tau}^{\wedge} 2$)

$$
\begin{aligned}
\sigma_{1,2} & =O M \pm \text { circle radius } \\
& =O M \pm M X \\
& =\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{(M G)^{2}+(G X)^{2}} \\
& =\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\frac{\left(\sigma_{x}-\sigma_{y}\right)^{2}}{4}+\tau^{2}}
\end{aligned}
$$

(b) Mohr's circle

Figure 17.32 Stressed element.

Figure 17.33 Mohr's circle.

Figure 17.34 Results for Example 17.10.

$17-21$

Steel bar , axial tensile load 10000 lb

Calculate Shear and normal stress at the plane shown

Type 1 - Combined Stress
Type 2 combined stress
asrahman@citytech.cuny.edu
I will post problems in Black board
How is this combined stress, relevant to the project?
Example - Roof Mount winch motor system

Analyse factor of safety based on top and bottom fiber of the shaft
Find design codes, where the factor of safety of a winch motor system is specified, then utilse this into your design

USe this codes as a reference

