Shear Forces and Bending Moments in Beams

REACTIONS
 SHEAR FORCE DIAGRAMS
 MOMENT DIAGRAMS
 [EXAMPLES]

- Equilibrium Method for V and M Diagrams
- Semi-graphical Method for V and M Diagrams

Equilibrium Method for V and M Diagrams

Q1:

Q2:

Q3: Find reactions, Shear Force, Location of zero shear forced, Maximum Moment, Mid-span moment.

Take a moment about C and Find Reaction at A
$\mathrm{R}_{\mathrm{A}}=(20 \times 15) / 20=15 \mathrm{kips}$
Take a moment about A and Find Reaction at C $\mathrm{R}_{\mathrm{c}}=(20 \times 5) / 20=5 \mathrm{kips}$
[CHECK: Sum of all the forces Upward = sum of the all the forces downward $15+5=20 \mathrm{OK}]$

PDF_C8_b (Shear Forces and Bending Moments in Beams)

Q5: Calculate Reactions at A and B. Draw Shear Force Diagram. Find location of Zero Shear force. Find the Maximum Moment. Draw the Moment Diagram.

Q6: A simply supported beam with a triangularly distributed downward load is shown in Fig. Calculate reaction; draw shear force diagram; find location of $\mathrm{V}=0$; calculate maximum moment, and draw the moment diagram.

6k/ft

PDF_C8_b (Shear Forces and Bending Moments in Beams)

Q7:

PDF_C8_b (Shear Forces and Bending Moments in Beams)

PDF_C8_b (Shear Forces and Bending Moments in Beams)

Semi-graphical Method for V and M Diagrams
Q8:

Q9:

PDF_C8_b (Shear Forces and Bending Moments in Beams)

Thank you.

