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Combined normal and shear stress

Failure Analysis
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Figure 17.18 Combined normal and shear stress.
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Make a group of 3

six groups

Maximum wind load, Postload, Beam load

Consider Severe wind direction

Project credit, 10 -15% /
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Consider Wind Load, Pole Load, Length of the post,
Analyse using Beam Bending, Deflection, Shear Stress

Analyse using Principal stresses

Design a Traffic Signal Post

Design the traffic post

Design a Traffic Post
Considering the following conditions-



Mohr Circle for Plane Stress

Ox + Oy Oy — Oy i
o= — 5 + 12 — COS 2¢p + Tyy SIN2¢ (3-8)

Oy — Oy

sin 2¢p + 1yy cOs 2¢ (3-9)

Equations (3—8) and (3-9) are called the plane-stress transformation equations.
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Mohr’s Circle Shear Convention
This convention is followed in drawing Mohr’s circle:

* Shear stresses tending to rotate the element clockwise (cw) are plotted above the
o axis.

* Shear stresses tending to rotate the element counterclockwise (ccw) are plotted below
the o axis.

For example, consider the right face of the element in Fig. 3-8h. By Mohr’s circle con-
vention the shear stress shown is plotted below the o axis because it tends to rotate the
element counterclockwise. The shear stress on the top face of the element is plotted
above the o axis because it tends to rotate the element clockwise.

In Fig. 3—10 we create a coordinate system with normal stresses plotted along the
abscissa and shear stresses plotted as the ordinates. On the abscissa, tensile (positive)
normal stresses are plotted to the right of the origin O and compressive (negative) nor-
mal stresses to the left. On the ordinate, clockwise (cw) shear stresses are plotted up;
counterclockwise (ccw) shear stresses are plotted down.

Principal Stress from applied stress

Sigma 1,2 = (Sigmax+Sigmay)/2+R

Taul,2 =+R



A stress element has o, = 80 MPa and 1,, = 50 MPa cw, as shown in Fig. 3-11a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these
on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show 1; and 1;, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part a using the transformation equations only.

load and Stress Analysis | 85

(b) The transformation equations are programmable. From Eq. (3-10),

1., { 2ty 1, (2(=30) . R
bp = Etan — = Etan 20 = —25.7",64.3

From Eq. (3—-8), for the first angle ¢, = —25.7°,

50 -—

(a)

’ 30+0+SO—D
o=
2 2

cos[2(—25.7)] + (—50) sin[2(—25.7)] = 104.03 MPa

The shear on this surface is obtained from Eq. (3-9) as

80 -0
T=—

sin[2(—25.7)] + (—50) cos[2(—25.7)] = 0 MPa

iB)

which confirms that 104.03 MPa is a principal stress. From Eq. (3-8), for ¢, = 64.3°,

80+0 80—0 ,
0 = —5— + —5— cos[2(64.3)] + (~50) sin[2(64.3)] = ~24.03 MPa

x
25.7¢

o =104 \{I

(€) (d)



The wide-flange beam is subjected to the 50-kN force.
Determine the principal stresses in the beam at point A
located on the web at the bottom of the upper flange.

Although it is not very accurate, use the shear formula to
calculate the shear stress.

50 kN




Solution

—1 m— Im |
A 1.
) 71— 12 mm
10 mm-—f-— ]:5{3 m N.A,
—=a—12 . .
— T ™ Determine | of the section
SOLUTION 200 mm
I= ;—?({1_23([1.2?4;-‘ - %{[}.19]{{1.253-‘ = 95.451233(10"°%) m*
) ) = A¥y=
Q4 = (0.131)(0.012)(02) = 0.3144(10 ) o’ Q= A%y= Area moment 3m S <N
My  150(10%)(0.125 kN A
oy — My DOIONOID) o or 3 mpa M:@"‘w o (447 1P
I 95451233(107%)
VO,  S0(10%)(03144)(107%) ( A 1926, 43 rFPa
Ty = — — = 16.47 MPa 4
It 95451233(107%)(0.01) 2
o; = 19643MPa 0, =0 7, = —16.47MPa Y= 50 Ked

o, + o, [fo — o2 .
oy 2= - 7 — X \I'.I'I( = - ) + T_1'_L'_.
Principal Stresses _

_ , Shear, V=50 KN
196.43 + 0 I,-(]'E}ﬁ.-ﬂ — 0
\u

2 2

)' + (—16.47)*

ap = 198 MPa
oy = —1.37T MPa

Moment, M=150 KN.M

Lets find principle stress using mohr’s Circle
Also Solve for Point B



Design of Column

Gravity Load * Column Carry load across the cross section
* This means the load that is carried by the column must
apply to the perpendicular to the cross section

olumn
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Colu

Critical Load= How much load the column can take before
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Buckling?
P
P l
v Shape of z
l 1\ buckled P, = m
T\\ 1',[ "11 column E LE “S”
1A}
1 where P, = the critical load; the concentric load that will
L cause initial buckling (Ib) (N)
;} ;} T = amathematical constant (3.1416)

= the modulus of elasticity of the material
(psi) (MPa)

I = the least moment of inertia of the cross

section (in.*) (mm?*)

L = the length of the column from pin end to pin

end (in.) (mm)

Slenderness ratio, |/r, determines if the beam is long
or intermediate



- = = mmapeu

Tests have verified that Euler’s formula accurately pre-
dicts the buckling load if conditions are such that the buck-
ling stress is less than the proportional limit of the material
and adherence to the basic assumptions is maintained. Since
the buckling stress must be compared with the proportional
limit, Euler’s formula is com monly written in terms of stress,
which can be derived from the preceding buckling load
formula using the relationship r = VI/A or I = As? (see
Section 8.5):

w’E
(L/r)?

where f, = the critical stress: the uniform compressive
stress at which initial buckling occurs (same
units as F)
r = the least radius of gyration of the cross
section (same units as [

fe = (18.2)

L/r= Slenderness Ratio

r=least radius of gyration
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EXAMPLE 18.1

Solution

A 25-mm-diametar steel rod, shown in Figure 18.2, is used as a pin-connected compression
member. Calculate the critical load using Euler’s formula. The proportional limit for the steel is
235 MPa and the modulus of elasticity is 207 x 10° MPa. Assume the length of the rod to be
fa) 1 mand (b) 2 m.

Pinned ends

d=25mm

Section A — A

FIGURE 18.2 Pin-connected compression member.

r=sqrt(l/A)
=d/4

Refer to Table 3 inside the back cover for properties of areas:

A = 0.78544% = 0.7854(25 mm)? = 491 mm?

d_25mm _
= 4— = 4 = 6,25 mm
Proportional limit=Yield Stress
{a) For a 1-m length of rod,
m2E @ (207 x 10° MPa)
T (4/r)?  [(1000 mm)/(6.25 mm)]?
= 79.8 MPa < 235 MPa (0.K.)
The critical load can then be calculated from
P = f,A= (798 MPa}(491 mm?) = 39.2 x 10° N = 39.2 kN
(b} For a 2-m length of rod,
- wE w (207 % 10° MPa)
*T (4?7 [(2000 mm)/(6.25 mm)]?
= 19.95 MPa < 235 MPa (0.K.)

P, = f.A = (19.95MPa) (491 mm®) = 9.80 % 107 N = 9.8kN

Solution

From Table 3,

A = 0.7854d% = 0.7854(1in.)* = 0.7854 in.?

d_10in. .
r= 1—- T = 0.25in.
po =t _ T e ins
— T — = L n.
54 B4

(a) The shortest length L for which Euler's formula applies will be that length for which the critical stress
is equal to the proportional limit:

mE
fo = =
{L/r)
Solve for L:
267 w°(30,000,000 psi}(0.25in.)?
= wE? _ 7 Ll L0 Y RS
f, 50,000 psi
from which
L=19.24in.

(b} If L = 48 in., Euler's formula is valid (48 in. > 19.24 in.). Therefore, the critical load can be cal-
culated from Equation (18.1):

p _ TE _ =° (30,000,000 psi) (0.0491 in.*)

{2 (481in.)2

= 63101b



Effect of Slenderness ratio

[, = Critical stress (psi)

50,000 1

40,000

30,000 4

20,000 4

10,000 1

0

2

f = m'E
TE Lt
using

£ = 30,000,000 psi

0

1D 200 300 400
Slenderness ratio (’:—)

Euler Curve for Pinned-End Columns

A column that has high slenderness ratio

tends to buckle about the axis

It determines whether the column will buckle or not
Slenderness Ratio=Le/r

Le= Effective length

r=Sqrt(l/A)

For Circular section, I=pi()*D"4/64

A=pi()D"2/4

Slenderness ratio=D/4

If ratio <50, short beam, the equation is valid.



Effective length factor

Effective length depends on the end condition

TABLE 18.1 Effective length factors

=
=
-
=
-

|

|

|

|

”@z i
A LN 9 i\*‘ Recommended K Number of Times
\ \ / W Idealized Value for Stronger Than
. \Bffective |\ | Effective | | lc::fﬁ“'c { End Theoretical K Design and Pinned-End
I = Actual || tength V| otengm | (ki L Conditions Value Analysis Column?
column length I |(KL) / (KL) 1 —071 Effective
e / o L I length .
!,-F =1L '_;_‘_ =051 ,‘I_ (KL)=20L Finned 1.0 1.0 1
Il .
g AN 7 R Fixed 05 0.65 4
3 i
Fixed/pinned 0.7 0.80 2
i 1
p p p p Fixed/free 2.0 2.10 L
(a) Pinned (b) Fixed (¢) Fixed/Pinned  (d) Fixed/Free “Using the theoretical K value.
(flagpole)

Note: [ indicates inflection points



EXAMPLE 13.3 A column is composed of a 3-in.-diameter standard-weight steel pipe (Fipe 3 5id.) and Is solidly embed-
ded in a concrete foundation at its base and pinned at the top. The column is 12 ft long, as shown in
Figure 18.5. Assuming the proportional limit to be 34 ksi, find the buckling load using the Euler theory.

l

Pinnesd '“““*5_\'""—';'
f
II_."
l Building Column .
Of Structural column .
Pinned i S Has both fixed ends v 1279 If both ends fixed, K =.65,
! b | o .
/ | Will load capacity go up or down?
; | By how much? What percentage?
! Fixed “h«f‘:“'—'/E?/ZZETL'
i
| T
\
1'1 12°-0 FIGURE 18.5 Column for Example 18.3.
\ A e
[ Solution This is a fixed-pinned column. From Appendix B, the cross-sectional properties for this pipe are
'\l A=223infandr=116in. .
From Table 18.1, select K = 0.8 (recommended K for design/analysis). Calculate fo using
Eguation (18.4);
. .- fim 2
leﬂd Wm"ﬁ? r :F _ -','TEE _ i [EG,DD\T‘:kf 1n. :| — EUI:I k;iﬂ_e
°= 7K\ [08(1441n.) j
4 (;_) ( 1.16 in.

Note that 30 ksi < 34 ksi, therefore the Euler theory is applicable.

) ) P, = f.A=300k/in2(223in?%) = 669k
That means, this column can carry 67 Kilo Pound Load
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