NEW YORK CITY COLLEGE OF TECHNOLOGY MATHEMATICS COLLOQUIUM
 FEBRUARY 16TH, 2017
 ROOM N720

PROF. SATYANAND SINGH

Terms of lambda sequences over certain two element sets.

Abstract

For \mathcal{A} any finite set of positive integers greater than 1 , and $a \in \mathcal{A}$ we define the set $A_{a}=\left\{\varepsilon_{j}(a) \cdot a^{j}: j=0,1,2, \ldots\right\}$, where $\varepsilon_{j}(a) \in\{0, \pm 1, \pm 2, \ldots, \pm\lfloor a / 2\rfloor\}$. Nathanson studied the properties of the related $\lambda_{\mathcal{A}}(h)$ sequences that are important in Geometric Group Theory. In this setting positive integers are partitioned as sums of elements from the set $\mathcal{S}_{\mathcal{A}}=\bigcup_{a \in \mathcal{A}} A_{a}$. Nathanson posed the problem to compute $\lambda_{\mathcal{A}}(h)$, where $\lambda_{\mathcal{A}}(h)$ is defined as the smallest positive integer that can be represented as the sum of elements of $\mathcal{S}_{\mathcal{A}}$ with length h, but that cannot be represented as a sum with length less than h. In this presentation we will restrict our study to sets of the shape $\mathcal{A}=\{2, n\}$ and odd $n>1$ and illustrate how to generate the values of $\lambda_{2, n}(h)$ for fixed $h \in\{1,2,3\}$.

