Session 4

Introduction to Desmos

4.1 Basics of the Desmos Graphing Calculator

We now give a short introduction to the Desmos Graphing Calculator which
can be used to graph functions such as the ones discussed in the previous
chapter. The Desmos Graphing Calculator can be found at the URL:

www.desmos.com/calculator
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It is worth noting that there is also a mobile app (both for iOS and for android)
with the same functionality.

Demos mobile app icon: w

49



50 SESSION 4. INTRODUCTION TO DESMOS

It is straightforward to graph a function in Desmos, say y = 2.
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Moreover, we can easily locate local maxima and minima of a function (the
peaks and valleys of its graph), as well as its x- and y-intercepts by simply
clicking on the graph. The z-intercepts are also commonly called zeros or
roots of the function. In other words, a root or a zero of a function f is a
number x for which f(z) = 0.

Example 4.1. Graph the function y = 2® — 22% — 4z + 4.
a) Approximate the z-intercepts and the y-intercept of the function.
b) Approximate the (local) maximum and minimum. (A (local) maximum or
minimum is also called an (local) extremum.)
Solution.

a) Enter the function in Desmos and click on the z-intercepts (points where
the graph intersects with the z-axis) and the y-intercept (the point
where the graph intersects with the y-axis).
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There are three z-intercepts and one y-intercept:

x-intercepts: (x,y) =~ (—1.709,0), (x,y) =~ (0.806,0)
(z,y) ~ (2.903,0)
y-intercept: (x,y) = (0,4)

Note that the y-intercept is precisely at (0, 4), whereas the z-intercepts
are only approximated.

b) Similarly, we obtain the local maximum and the local minimum.
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local max: (z,y) ~ (—0.667,5.481), local min: (z,y) = (2, —4)

One can check (using methods from calculus) that the local minimum is pre-
cisely at (2, —4), whereas the local maximum is only approximated. 0

Example 4.2. For the two functions below, find all intercepts and all extrema.
Approximate your answer to the nearest thousandth.

a) f(z) =a" —22° —4a* + 42+ 3 b) f(z) =2° — 92 — 2
Solution.

a) Graphing the function in Desmos, we can read off the coordinates of the
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wanted points (the intercepts and extrema) by clicking on them.
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x-intercepts: (z,y) ~ (—1.517,0), (z,y) =~ (—0.552,0),
(r,y) ~ (1.287,0), (x,y)~ (2.782,0)

y-intercept: (z,y) = (0, 3)
(z,y) = (
(z,y) =~ (

local maximum: ~ (0.409, 3.858)

local mininima: ~ (—1.111,-2.115), (z,y) ~ (2.202,—5.430)

Here, Desmos already rounded coordinates to the nearest thousandth.
For example, the maximum with one more digit is (z,y) =~ (0.4088, 3.8580),
which rounds to (0.409, 3.858).

b) Graphing f(z) = 2® — 922 — x shows that we don't have a complete
view of all the points of interest in the initial viewing window.
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Zooming in and out (by using the plus and minus symbols on the graph
or by scrolling on the screen), we can get a closer view of the wanted
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points.
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Note that by zooming in, Desmos may display more than three digits
after the decimal point. Rounding to the nearest thousandth gives the
following answers.

x-intercepts: ~ (—0.110,0), (x,y)=(0,0),

(z,y) = (

(z,y) = (
y-intercept: (z,y) = (0,0)

local maximum: (z,y) =~ (
local mininimum: (z,y) = (

O

Note 4.3. Besides zooming in and out, the display window can also be set manually via the Graph Settings

a
menu (click on the wrench symbol £ ). The home button ® resets the window to a window size where
the x is approximately between —10 and 10 and with a matching scale for y.

There is also a possibility to rescale each axis individually. To this end hover the pointer over the axis that
needs to be rescaled and press and hold the shift key. The axis will appear in blue, and can then be rescaled
(click and move the pointer in the wanted direction). Below is the rescaled graph for y = 23 — 922 — z.
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Note 4.4. Desmos only approximates its answers, such as intercepts, maxima,
and minima. It is our task to correctly interpret and confirm any answers
inferred from Desmos.

For example, graphing y = (z — 2)? + 0.0001 appears to show a root at
(2,0). Nevertheless, a closer look reveals that this function does not have a
root at (2,0).
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We next show how to graph piecewise defined functions with Desmos.

Example 4.5. Graph the piecewise defined function from Example 3.14 with

Desmos.
r+3 ,for —3<ax<-1

y=1¢ 2% ,for —-l<z<l1
3 Jfor 2<2<3

Solution. A piecewise defined function is entered in Desmos with a set bracket
{}, separating each branch with a comma. Each branch is entered as “condi-
tion:function value”; for example the top branch in our example is entered as
—3 <2 < —1: 2+ 3. Combining the three branches, we obtain:

y={ 3<z<-l:2+3 , —-l<z<l:2? |, 2<2<3:3 }
= 4+ 'S & « . y:
W] - { 3cx<—lx+3-1<x<la®2<x<33) i
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Although there are no open or closed circles at the endpoints of the line
segments, Desmos does interpret these endpoints correctly. This can be seen
by clicking on the endpoint of a branch.
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We can add the missing endpoints manually by entering the coordinates for
each point.
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To adjust the open/closedness of the point, as well as the color, we click the

Edit List button ® on top, then click on the big (in this case blue) circle to
the left of the entered point. We can then set the style and color of the point.
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Performing this for each endpoint, we obtain the following graph.
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Our last example in this section shows how to easily compute function
values and how to create tables in Desmos.

Example 4.6. Consider the functions

f(z) =2® —42® +5

and (z) = 2z, for z <2
IV =Vd—2 for 2<x<5

Compute the function values
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Solution. First, graph both functions f and g.
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A direct way of computing function values is given by simply entering the

wanted expression. Note that undefined function values (such as ¢(6)) are
indeed stated as undefined.

N

N o) ={r<22x2<x<54—x]

©
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N flx)=x—ax?+5
@ glx)={x<2:2x2<x<54—x]

£(2)
= -3

2(2)

Il
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2(6)

= undefined

Another way to calculate function values comes from generating a table. Press
the Add Item button + on top, and click on “table”.
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1
f(x) expression f3 — 4)62 +5

£33 note
% table
- folder
@ image

{x<2:2x2<x<54—x}
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Modify the table by replacing y; with f(z;). We can also compute multiple
function values, such as f(z1) and g(x;), by putting g(x;) next to f(x1).
Below 1, we enter the desired inputs.

4
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flx)=x3-242+5 :
@ glx) ={xr<2:2x2<x<54—x}

X1 6 f(XL) 6 g(xl)

1 2 2

g(x) ={x<2:2x2<x<54—x}
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Thus, f(2) = =3, f(4) =5, g(1) =2, g(2) =4, and ¢(6) in undefined. O

4.2 Exploring functions with Desmos

We now explore sliders in Desmos, and we revisit the domain and range of a
function, as well as the vertical line test. We also give an example of finding
intersection points of two graphs.

Example 4.7. Explore the equation of a line y = m -z + b for various values
of m and b using sliders.

Solution. We enter y = mx + b into Desmos.

+ e &

y=mx+1Y

add slider: m b m

We want m and b to be interpreted as constants, but these constants can be
adjusted. This is precisely what sliders provide in Desmos. We therefore add
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the sliders m and b.
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Changing the values for m and b, we instantly see the effect on its graph.
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Example 4.8. Find the (approximate) domain and range of the following func-
tions.

a) f(x)=vVz—3+4 b) fla)=2>+8r -7
Solution.

a) Enter y = v/ — 3 + 4 into Desmos. Note, that the square root symbol
can be entered by typing the letters sqrt, or, alternatively, first show the
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keyboard by clicking ®* and then clicking the square-root symbol.

0 5 10 15
ab ¢ 8 9 + functions
> 4 5 6 X — —
=S 1 2 3 = a

We see that the function starts from some vertex, and then increases as
x increases. To find the vertex, click on it.
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Thus, the domain and range appear to be D = [3,00) and R = [4, o).

b) Similarly, we can graph the function y = 2% + 8z — 7 and read off its
domain and range. Note, that there is no restriction on the inputs z, so
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that the domain is all real numbers.
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From the graph, the domain and range are therefore D = R and R =
[—23, 00).

O

Example 4.9. Graph each of the following equations. Determine whether the
graph is the graph of a function or not.

a) (z =32+ (y—5?%*=16 by 32> +¢y*+5xy=7
Solution.

a) Graphing (x —3)?+ (y — 5)® = 16 shows that we obtain a circle.
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To see if this is the graph of a function, we can use the vertical line test
(from Observation 3.10). The y-axis (which is the vertical line at x = 0)
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intersects the circle in two points. This shows that the circle is not the
graph of a function. Indeed, if we solve the equation for y, we get:

(r =32+ (y—-572=16 = (y—572=16—(z—3)*
— y—5=416— (z — 3)2
— y=5++16— (z —3)?

This shows that the circle is made up of two parts, the upper half circle

y = 5+4/16 — (x — 3)? and the lower half circle y = 5—/16 — (z — 3)2,

each of which is the graph of a function.

b) We can easily enter more complicated equations into Desmos.
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The vertical line at x = —2 intersects the graph at three points, which

shows that it is not the graph of a function.
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Note 4.10. We recall that the equation (z —h)*+ (y — k)? = r? always forms
a circle in the plane. Indeed, this equation describes a circle with center
C'(h, k) and radius r. This can easily be explored in Desmos using sliders;
see Exercise 4.6 below.

In the last example of this section we solve an equation by determining
the intersection of two graphs.

Example 4.11. Solve the equation
v —3r4+2=2"+227 —1
Approximate your answer to the nearest thousandth.

Solution. We can solve the equation by graphing the left-hand side y =
r? — 3z + 2 and the right-hand side y = 23 + 22> — 1, and by determining
those values of = where both sides are equal. This occurs precisely at the
intersection of the two graphs. Graphing both functions and clicking on the
intersection, we obtain:
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The intersection is at (x,y) ~ (0.711,0.372). Therefore, the two sides of
the equation are equal for x = 0.711 (in which case both the left-hand side
and right-hand side are approximately 0.372). Therefore, x ~ 0.711 is the
approximate solution. L

4.3 Exercises

4.1. Graph the function in Desmos.
a)y=3r—-5 bly=22-3r-2 Jy=2*—-323+22-1
d)y=+Va?—14 e)yzgzig f) y=|z+ 3
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4.2. For each of the functions below, find all roots, all local maxima,
all local minima, and the y-intercept.

a) f(z) =23 +42* — 20 -9 b)f(x):x3—6x2+7x+4

o flx) = —4:): + 322+ Tr+1 flz) = 5:)33 + 22°

e) f(z) = — 42?41 f) f(x) —z* +52° —4r + 3

g)f(x)—x +2x —x® =322 -z h) f(x)=+/]2"=3] — 22+ 3
4.3. Determine the domain and range using Desmos.

a)y=|r—2|+5 b)y=—-22+7
Jy=a22—6r+4 d)y=—-2>—8x+3
e)y=3+Vr+5 fly=6—o+v4d—x

g) y=2a2"—8x?+11 h)yzﬁ—:g

4.4. Determine whether the equation describes a function or not.

a) 2 +2y—3r=7 b)2?+2y2 -3 =7
Ay’ +8y+15=2 dy’+2°+y+az=1

)y =22 a2+ (y— Vi) =1

4.5. Solve the equation for y and graph all branches in the same
window.

a)z?+y* =4 b) (m—|—5) y? =15 o (x—172%+(y—2)32%=9
d)y’=2>+3 e)y’+22—8x—14=0 f)y = —2? 477

4.6. Set up the general equation of a circle in Desmos, where the
center and the radius can be changed using sliders. If a circle of radius 3
with center at the origin (0,0) is shifted 4 units to the right and shifted 2
units down, then what is its equation?

4.7. Find all solutions of the equation. Round your answer to the
nearest thousandth.

a) 3 +3=a"+7 b) 423 + 622 — 3z —2 =10
o) 22 =2 d) 55 = 2% + 6

)i+ =t -2+ f)32?=23—2*+32
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